Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neibastop2 Unicode version

Theorem neibastop2 26310
Description: In the topology generated by a neighborhood base, a set is a neighborhood of a point iff it contains a subset in the base. (Contributed by Jeff Hankins, 9-Sep-2009.) (Proof shortened by Mario Carneiro, 11-Sep-2015.)
Hypotheses
Ref Expression
neibastop1.1  |-  ( ph  ->  X  e.  V )
neibastop1.2  |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/)
} ) )
neibastop1.3  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
)  /\  w  e.  ( F `  x ) ) )  ->  (
( F `  x
)  i^i  ~P (
v  i^i  w )
)  =/=  (/) )
neibastop1.4  |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) }
neibastop1.5  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  x  e.  v )
neibastop1.6  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t 
( ( F `  y )  i^i  ~P v )  =/=  (/) )
Assertion
Ref Expression
neibastop2  |-  ( (
ph  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J ) `  { P } )  <->  ( N  C_  X  /\  ( ( F `  P )  i^i  ~P N )  =/=  (/) ) ) )
Distinct variable groups:    v, t,
y, x    v, J    x, y, J    t, o,
v, w, x, y, P    o, N, t, v, w, x, y   
o, F, t, v, w, x, y    ph, o,
t, v, w, x, y    o, X, t, v, w, x, y
Allowed substitution hints:    J( w, t, o)    V( x, y, w, v, t, o)

Proof of Theorem neibastop2
Dummy variables  f  n  z  s  u  a  b  g are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 neibastop1.1 . . . . . . . . 9  |-  ( ph  ->  X  e.  V )
2 neibastop1.2 . . . . . . . . 9  |-  ( ph  ->  F : X --> ( ~P ~P X  \  { (/)
} ) )
3 neibastop1.3 . . . . . . . . 9  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
)  /\  w  e.  ( F `  x ) ) )  ->  (
( F `  x
)  i^i  ~P (
v  i^i  w )
)  =/=  (/) )
4 neibastop1.4 . . . . . . . . 9  |-  J  =  { o  e.  ~P X  |  A. x  e.  o  ( ( F `  x )  i^i  ~P o )  =/=  (/) }
51, 2, 3, 4neibastop1 26308 . . . . . . . 8  |-  ( ph  ->  J  e.  (TopOn `  X ) )
6 topontop 16664 . . . . . . . 8  |-  ( J  e.  (TopOn `  X
)  ->  J  e.  Top )
75, 6syl 15 . . . . . . 7  |-  ( ph  ->  J  e.  Top )
87adantr 451 . . . . . 6  |-  ( (
ph  /\  P  e.  X )  ->  J  e.  Top )
9 eqid 2283 . . . . . . 7  |-  U. J  =  U. J
109neii1 16843 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  N  C_  U. J
)
118, 10sylan 457 . . . . 5  |-  ( ( ( ph  /\  P  e.  X )  /\  N  e.  ( ( nei `  J
) `  { P } ) )  ->  N  C_  U. J )
12 toponuni 16665 . . . . . . 7  |-  ( J  e.  (TopOn `  X
)  ->  X  =  U. J )
135, 12syl 15 . . . . . 6  |-  ( ph  ->  X  =  U. J
)
1413ad2antrr 706 . . . . 5  |-  ( ( ( ph  /\  P  e.  X )  /\  N  e.  ( ( nei `  J
) `  { P } ) )  ->  X  =  U. J )
1511, 14sseqtr4d 3215 . . . 4  |-  ( ( ( ph  /\  P  e.  X )  /\  N  e.  ( ( nei `  J
) `  { P } ) )  ->  N  C_  X )
16 neii2 16845 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  { P } ) )  ->  E. y  e.  J  ( { P }  C_  y  /\  y  C_  N
) )
178, 16sylan 457 . . . . 5  |-  ( ( ( ph  /\  P  e.  X )  /\  N  e.  ( ( nei `  J
) `  { P } ) )  ->  E. y  e.  J  ( { P }  C_  y  /\  y  C_  N
) )
18 pweq 3628 . . . . . . . . . . 11  |-  ( o  =  y  ->  ~P o  =  ~P y
)
1918ineq2d 3370 . . . . . . . . . 10  |-  ( o  =  y  ->  (
( F `  x
)  i^i  ~P o
)  =  ( ( F `  x )  i^i  ~P y ) )
2019neeq1d 2459 . . . . . . . . 9  |-  ( o  =  y  ->  (
( ( F `  x )  i^i  ~P o )  =/=  (/)  <->  ( ( F `  x )  i^i  ~P y )  =/=  (/) ) )
2120raleqbi1dv 2744 . . . . . . . 8  |-  ( o  =  y  ->  ( A. x  e.  o 
( ( F `  x )  i^i  ~P o )  =/=  (/)  <->  A. x  e.  y  ( ( F `  x )  i^i  ~P y )  =/=  (/) ) )
2221, 4elrab2 2925 . . . . . . 7  |-  ( y  e.  J  <->  ( y  e.  ~P X  /\  A. x  e.  y  (
( F `  x
)  i^i  ~P y
)  =/=  (/) ) )
23 simprrr 741 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  ( y  e.  ~P X  /\  ( { P }  C_  y  /\  y  C_  N ) ) )  ->  y  C_  N
)
24 sspwb 4223 . . . . . . . . . . . . 13  |-  ( y 
C_  N  <->  ~P y  C_ 
~P N )
2523, 24sylib 188 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  ( y  e.  ~P X  /\  ( { P }  C_  y  /\  y  C_  N ) ) )  ->  ~P y  C_  ~P N )
26 sslin 3395 . . . . . . . . . . . 12  |-  ( ~P y  C_  ~P N  ->  ( ( F `  P )  i^i  ~P y )  C_  (
( F `  P
)  i^i  ~P N
) )
2725, 26syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  ( y  e.  ~P X  /\  ( { P }  C_  y  /\  y  C_  N ) ) )  ->  ( ( F `
 P )  i^i 
~P y )  C_  ( ( F `  P )  i^i  ~P N ) )
28 simprrl 740 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  ( y  e.  ~P X  /\  ( { P }  C_  y  /\  y  C_  N ) ) )  ->  { P }  C_  y )
29 simpllr 735 . . . . . . . . . . . . . 14  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  ( y  e.  ~P X  /\  ( { P }  C_  y  /\  y  C_  N ) ) )  ->  P  e.  X
)
30 snssg 3754 . . . . . . . . . . . . . 14  |-  ( P  e.  X  ->  ( P  e.  y  <->  { P }  C_  y ) )
3129, 30syl 15 . . . . . . . . . . . . 13  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  ( y  e.  ~P X  /\  ( { P }  C_  y  /\  y  C_  N ) ) )  ->  ( P  e.  y  <->  { P }  C_  y ) )
3228, 31mpbird 223 . . . . . . . . . . . 12  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  ( y  e.  ~P X  /\  ( { P }  C_  y  /\  y  C_  N ) ) )  ->  P  e.  y )
33 fveq2 5525 . . . . . . . . . . . . . . 15  |-  ( x  =  P  ->  ( F `  x )  =  ( F `  P ) )
3433ineq1d 3369 . . . . . . . . . . . . . 14  |-  ( x  =  P  ->  (
( F `  x
)  i^i  ~P y
)  =  ( ( F `  P )  i^i  ~P y ) )
3534neeq1d 2459 . . . . . . . . . . . . 13  |-  ( x  =  P  ->  (
( ( F `  x )  i^i  ~P y )  =/=  (/)  <->  ( ( F `  P )  i^i  ~P y )  =/=  (/) ) )
3635rspcv 2880 . . . . . . . . . . . 12  |-  ( P  e.  y  ->  ( A. x  e.  y 
( ( F `  x )  i^i  ~P y )  =/=  (/)  ->  (
( F `  P
)  i^i  ~P y
)  =/=  (/) ) )
3732, 36syl 15 . . . . . . . . . . 11  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  ( y  e.  ~P X  /\  ( { P }  C_  y  /\  y  C_  N ) ) )  ->  ( A. x  e.  y  ( ( F `  x )  i^i  ~P y )  =/=  (/)  ->  ( ( F `
 P )  i^i 
~P y )  =/=  (/) ) )
38 ssn0 3487 . . . . . . . . . . 11  |-  ( ( ( ( F `  P )  i^i  ~P y )  C_  (
( F `  P
)  i^i  ~P N
)  /\  ( ( F `  P )  i^i  ~P y )  =/=  (/) )  ->  ( ( F `  P )  i^i  ~P N )  =/=  (/) )
3927, 37, 38ee12an 1353 . . . . . . . . . 10  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  ( y  e.  ~P X  /\  ( { P }  C_  y  /\  y  C_  N ) ) )  ->  ( A. x  e.  y  ( ( F `  x )  i^i  ~P y )  =/=  (/)  ->  ( ( F `
 P )  i^i 
~P N )  =/=  (/) ) )
4039expr 598 . . . . . . . . 9  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  y  e.  ~P X
)  ->  ( ( { P }  C_  y  /\  y  C_  N )  ->  ( A. x  e.  y  ( ( F `  x )  i^i  ~P y )  =/=  (/)  ->  ( ( F `
 P )  i^i 
~P N )  =/=  (/) ) ) )
4140com23 72 . . . . . . . 8  |-  ( ( ( ( ph  /\  P  e.  X )  /\  N  e.  (
( nei `  J
) `  { P } ) )  /\  y  e.  ~P X
)  ->  ( A. x  e.  y  (
( F `  x
)  i^i  ~P y
)  =/=  (/)  ->  (
( { P }  C_  y  /\  y  C_  N )  ->  (
( F `  P
)  i^i  ~P N
)  =/=  (/) ) ) )
4241expimpd 586 . . . . . . 7  |-  ( ( ( ph  /\  P  e.  X )  /\  N  e.  ( ( nei `  J
) `  { P } ) )  -> 
( ( y  e. 
~P X  /\  A. x  e.  y  (
( F `  x
)  i^i  ~P y
)  =/=  (/) )  -> 
( ( { P }  C_  y  /\  y  C_  N )  ->  (
( F `  P
)  i^i  ~P N
)  =/=  (/) ) ) )
4322, 42syl5bi 208 . . . . . 6  |-  ( ( ( ph  /\  P  e.  X )  /\  N  e.  ( ( nei `  J
) `  { P } ) )  -> 
( y  e.  J  ->  ( ( { P }  C_  y  /\  y  C_  N )  ->  (
( F `  P
)  i^i  ~P N
)  =/=  (/) ) ) )
4443rexlimdv 2666 . . . . 5  |-  ( ( ( ph  /\  P  e.  X )  /\  N  e.  ( ( nei `  J
) `  { P } ) )  -> 
( E. y  e.  J  ( { P }  C_  y  /\  y  C_  N )  ->  (
( F `  P
)  i^i  ~P N
)  =/=  (/) ) )
4517, 44mpd 14 . . . 4  |-  ( ( ( ph  /\  P  e.  X )  /\  N  e.  ( ( nei `  J
) `  { P } ) )  -> 
( ( F `  P )  i^i  ~P N )  =/=  (/) )
4615, 45jca 518 . . 3  |-  ( ( ( ph  /\  P  e.  X )  /\  N  e.  ( ( nei `  J
) `  { P } ) )  -> 
( N  C_  X  /\  ( ( F `  P )  i^i  ~P N )  =/=  (/) ) )
4746ex 423 . 2  |-  ( (
ph  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J ) `  { P } )  -> 
( N  C_  X  /\  ( ( F `  P )  i^i  ~P N )  =/=  (/) ) ) )
48 n0 3464 . . . 4  |-  ( ( ( F `  P
)  i^i  ~P N
)  =/=  (/)  <->  E. s 
s  e.  ( ( F `  P )  i^i  ~P N ) )
49 elin 3358 . . . . . 6  |-  ( s  e.  ( ( F `
 P )  i^i 
~P N )  <->  ( s  e.  ( F `  P
)  /\  s  e.  ~P N ) )
50 simprl 732 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  N  C_  X )
5113ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  X  =  U. J )
5250, 51sseqtrd 3214 . . . . . . . 8  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  N  C_  U. J )
531ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  X  e.  V )
542ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  F : X --> ( ~P ~P X  \  { (/)
} ) )
55 simpll 730 . . . . . . . . . 10  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  ph )
5655, 3sylan 457 . . . . . . . . 9  |-  ( ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  ( s  e.  ( F `  P )  /\  s  e.  ~P N ) ) )  /\  ( x  e.  X  /\  v  e.  ( F `  x
)  /\  w  e.  ( F `  x ) ) )  ->  (
( F `  x
)  i^i  ~P (
v  i^i  w )
)  =/=  (/) )
57 neibastop1.5 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  x  e.  v )
5855, 57sylan 457 . . . . . . . . 9  |-  ( ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  ( s  e.  ( F `  P )  /\  s  e.  ~P N ) ) )  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  x  e.  v )
59 neibastop1.6 . . . . . . . . . 10  |-  ( (
ph  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t 
( ( F `  y )  i^i  ~P v )  =/=  (/) )
6055, 59sylan 457 . . . . . . . . 9  |-  ( ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  ( s  e.  ( F `  P )  /\  s  e.  ~P N ) ) )  /\  ( x  e.  X  /\  v  e.  ( F `  x
) ) )  ->  E. t  e.  ( F `  x ) A. y  e.  t 
( ( F `  y )  i^i  ~P v )  =/=  (/) )
61 simplr 731 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  P  e.  X )
62 simprrl 740 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  -> 
s  e.  ( F `
 P ) )
63 simprrr 741 . . . . . . . . . 10  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  -> 
s  e.  ~P N
)
64 elpwi 3633 . . . . . . . . . 10  |-  ( s  e.  ~P N  -> 
s  C_  N )
6563, 64syl 15 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  -> 
s  C_  N )
66 fveq2 5525 . . . . . . . . . . . . . . . 16  |-  ( n  =  x  ->  ( F `  n )  =  ( F `  x ) )
6766ineq1d 3369 . . . . . . . . . . . . . . 15  |-  ( n  =  x  ->  (
( F `  n
)  i^i  ~P b
)  =  ( ( F `  x )  i^i  ~P b ) )
6867cbviunv 3941 . . . . . . . . . . . . . 14  |-  U_ n  e.  X  ( ( F `  n )  i^i  ~P b )  = 
U_ x  e.  X  ( ( F `  x )  i^i  ~P b )
69 pweq 3628 . . . . . . . . . . . . . . . 16  |-  ( b  =  z  ->  ~P b  =  ~P z
)
7069ineq2d 3370 . . . . . . . . . . . . . . 15  |-  ( b  =  z  ->  (
( F `  x
)  i^i  ~P b
)  =  ( ( F `  x )  i^i  ~P z ) )
7170iuneq2d 3930 . . . . . . . . . . . . . 14  |-  ( b  =  z  ->  U_ x  e.  X  ( ( F `  x )  i^i  ~P b )  = 
U_ x  e.  X  ( ( F `  x )  i^i  ~P z ) )
7268, 71syl5eq 2327 . . . . . . . . . . . . 13  |-  ( b  =  z  ->  U_ n  e.  X  ( ( F `  n )  i^i  ~P b )  = 
U_ x  e.  X  ( ( F `  x )  i^i  ~P z ) )
7372cbviunv 3941 . . . . . . . . . . . 12  |-  U_ b  e.  a  U_ n  e.  X  ( ( F `
 n )  i^i 
~P b )  = 
U_ z  e.  a 
U_ x  e.  X  ( ( F `  x )  i^i  ~P z )
7473mpteq2i 4103 . . . . . . . . . . 11  |-  ( a  e.  _V  |->  U_ b  e.  a  U_ n  e.  X  ( ( F `
 n )  i^i 
~P b ) )  =  ( a  e. 
_V  |->  U_ z  e.  a 
U_ x  e.  X  ( ( F `  x )  i^i  ~P z ) )
75 rdgeq1 6424 . . . . . . . . . . 11  |-  ( ( a  e.  _V  |->  U_ b  e.  a  U_ n  e.  X  (
( F `  n
)  i^i  ~P b
) )  =  ( a  e.  _V  |->  U_ z  e.  a  U_ x  e.  X  (
( F `  x
)  i^i  ~P z
) )  ->  rec ( ( a  e. 
_V  |->  U_ b  e.  a 
U_ n  e.  X  ( ( F `  n )  i^i  ~P b ) ) ,  { s } )  =  rec ( ( a  e.  _V  |->  U_ z  e.  a  U_ x  e.  X  (
( F `  x
)  i^i  ~P z
) ) ,  {
s } ) )
7674, 75ax-mp 8 . . . . . . . . . 10  |-  rec (
( a  e.  _V  |->  U_ b  e.  a  U_ n  e.  X  (
( F `  n
)  i^i  ~P b
) ) ,  {
s } )  =  rec ( ( a  e.  _V  |->  U_ z  e.  a  U_ x  e.  X  ( ( F `
 x )  i^i 
~P z ) ) ,  { s } )
7776reseq1i 4951 . . . . . . . . 9  |-  ( rec ( ( a  e. 
_V  |->  U_ b  e.  a 
U_ n  e.  X  ( ( F `  n )  i^i  ~P b ) ) ,  { s } )  |`  om )  =  ( rec ( ( a  e.  _V  |->  U_ z  e.  a  U_ x  e.  X  ( ( F `
 x )  i^i 
~P z ) ) ,  { s } )  |`  om )
78 pweq 3628 . . . . . . . . . . . . . 14  |-  ( g  =  f  ->  ~P g  =  ~P f
)
7978ineq2d 3370 . . . . . . . . . . . . 13  |-  ( g  =  f  ->  (
( F `  w
)  i^i  ~P g
)  =  ( ( F `  w )  i^i  ~P f ) )
8079neeq1d 2459 . . . . . . . . . . . 12  |-  ( g  =  f  ->  (
( ( F `  w )  i^i  ~P g )  =/=  (/)  <->  ( ( F `  w )  i^i  ~P f )  =/=  (/) ) )
8180cbvrexv 2765 . . . . . . . . . . 11  |-  ( E. g  e.  U. ran  ( rec ( ( a  e.  _V  |->  U_ b  e.  a  U_ n  e.  X  ( ( F `
 n )  i^i 
~P b ) ) ,  { s } )  |`  om )
( ( F `  w )  i^i  ~P g )  =/=  (/)  <->  E. f  e.  U. ran  ( rec ( ( a  e. 
_V  |->  U_ b  e.  a 
U_ n  e.  X  ( ( F `  n )  i^i  ~P b ) ) ,  { s } )  |`  om ) ( ( F `  w )  i^i  ~P f )  =/=  (/) )
82 fveq2 5525 . . . . . . . . . . . . . 14  |-  ( w  =  y  ->  ( F `  w )  =  ( F `  y ) )
8382ineq1d 3369 . . . . . . . . . . . . 13  |-  ( w  =  y  ->  (
( F `  w
)  i^i  ~P f
)  =  ( ( F `  y )  i^i  ~P f ) )
8483neeq1d 2459 . . . . . . . . . . . 12  |-  ( w  =  y  ->  (
( ( F `  w )  i^i  ~P f )  =/=  (/)  <->  ( ( F `  y )  i^i  ~P f )  =/=  (/) ) )
8584rexbidv 2564 . . . . . . . . . . 11  |-  ( w  =  y  ->  ( E. f  e.  U. ran  ( rec ( ( a  e.  _V  |->  U_ b  e.  a  U_ n  e.  X  ( ( F `
 n )  i^i 
~P b ) ) ,  { s } )  |`  om )
( ( F `  w )  i^i  ~P f )  =/=  (/)  <->  E. f  e.  U. ran  ( rec ( ( a  e. 
_V  |->  U_ b  e.  a 
U_ n  e.  X  ( ( F `  n )  i^i  ~P b ) ) ,  { s } )  |`  om ) ( ( F `  y )  i^i  ~P f )  =/=  (/) ) )
8681, 85syl5bb 248 . . . . . . . . . 10  |-  ( w  =  y  ->  ( E. g  e.  U. ran  ( rec ( ( a  e.  _V  |->  U_ b  e.  a  U_ n  e.  X  ( ( F `
 n )  i^i 
~P b ) ) ,  { s } )  |`  om )
( ( F `  w )  i^i  ~P g )  =/=  (/)  <->  E. f  e.  U. ran  ( rec ( ( a  e. 
_V  |->  U_ b  e.  a 
U_ n  e.  X  ( ( F `  n )  i^i  ~P b ) ) ,  { s } )  |`  om ) ( ( F `  y )  i^i  ~P f )  =/=  (/) ) )
8786cbvrabv 2787 . . . . . . . . 9  |-  { w  e.  X  |  E. g  e.  U. ran  ( rec ( ( a  e. 
_V  |->  U_ b  e.  a 
U_ n  e.  X  ( ( F `  n )  i^i  ~P b ) ) ,  { s } )  |`  om ) ( ( F `  w )  i^i  ~P g )  =/=  (/) }  =  {
y  e.  X  |  E. f  e.  U. ran  ( rec ( ( a  e.  _V  |->  U_ b  e.  a  U_ n  e.  X  ( ( F `
 n )  i^i 
~P b ) ) ,  { s } )  |`  om )
( ( F `  y )  i^i  ~P f )  =/=  (/) }
8853, 54, 56, 4, 58, 60, 61, 50, 62, 65, 77, 87neibastop2lem 26309 . . . . . . . 8  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  E. u  e.  J  ( P  e.  u  /\  u  C_  N ) )
897ad2antrr 706 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  J  e.  Top )
9061, 51eleqtrd 2359 . . . . . . . . 9  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  P  e.  U. J )
919isneip 16842 . . . . . . . . 9  |-  ( ( J  e.  Top  /\  P  e.  U. J )  ->  ( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_ 
U. J  /\  E. u  e.  J  ( P  e.  u  /\  u  C_  N ) ) ) )
9289, 90, 91syl2anc 642 . . . . . . . 8  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  -> 
( N  e.  ( ( nei `  J
) `  { P } )  <->  ( N  C_ 
U. J  /\  E. u  e.  J  ( P  e.  u  /\  u  C_  N ) ) ) )
9352, 88, 92mpbir2and 888 . . . . . . 7  |-  ( ( ( ph  /\  P  e.  X )  /\  ( N  C_  X  /\  (
s  e.  ( F `
 P )  /\  s  e.  ~P N
) ) )  ->  N  e.  ( ( nei `  J ) `  { P } ) )
9493expr 598 . . . . . 6  |-  ( ( ( ph  /\  P  e.  X )  /\  N  C_  X )  ->  (
( s  e.  ( F `  P )  /\  s  e.  ~P N )  ->  N  e.  ( ( nei `  J
) `  { P } ) ) )
9549, 94syl5bi 208 . . . . 5  |-  ( ( ( ph  /\  P  e.  X )  /\  N  C_  X )  ->  (
s  e.  ( ( F `  P )  i^i  ~P N )  ->  N  e.  ( ( nei `  J
) `  { P } ) ) )
9695exlimdv 1664 . . . 4  |-  ( ( ( ph  /\  P  e.  X )  /\  N  C_  X )  ->  ( E. s  s  e.  ( ( F `  P )  i^i  ~P N )  ->  N  e.  ( ( nei `  J
) `  { P } ) ) )
9748, 96syl5bi 208 . . 3  |-  ( ( ( ph  /\  P  e.  X )  /\  N  C_  X )  ->  (
( ( F `  P )  i^i  ~P N )  =/=  (/)  ->  N  e.  ( ( nei `  J
) `  { P } ) ) )
9897expimpd 586 . 2  |-  ( (
ph  /\  P  e.  X )  ->  (
( N  C_  X  /\  ( ( F `  P )  i^i  ~P N )  =/=  (/) )  ->  N  e.  ( ( nei `  J ) `  { P } ) ) )
9947, 98impbid 183 1  |-  ( (
ph  /\  P  e.  X )  ->  ( N  e.  ( ( nei `  J ) `  { P } )  <->  ( N  C_  X  /\  ( ( F `  P )  i^i  ~P N )  =/=  (/) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934   E.wex 1528    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547   _Vcvv 2788    \ cdif 3149    i^i cin 3151    C_ wss 3152   (/)c0 3455   ~Pcpw 3625   {csn 3640   U.cuni 3827   U_ciun 3905    e. cmpt 4077   omcom 4656   ran crn 4690    |` cres 4691   -->wf 5251   ` cfv 5255   reccrdg 6422   Topctop 16631  TopOnctopon 16632   neicnei 16834
This theorem is referenced by:  neibastop3  26311
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3or 935  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-pss 3168  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-tp 3648  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-tr 4114  df-eprel 4305  df-id 4309  df-po 4314  df-so 4315  df-fr 4352  df-we 4354  df-ord 4395  df-on 4396  df-lim 4397  df-suc 4398  df-om 4657  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-recs 6388  df-rdg 6423  df-top 16636  df-topon 16639  df-nei 16835
  Copyright terms: Public domain W3C validator