Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neificl Unicode version

Theorem neificl 26150
Description: Neighborhoods are closed under finite intersection. (Contributed by Jeff Madsen, 2-Sep-2009.) (Revised by Mario Carneiro, 25-Nov-2013.)
Assertion
Ref Expression
neificl  |-  ( ( ( J  e.  Top  /\  N  C_  ( ( nei `  J ) `  S ) )  /\  ( N  e.  Fin  /\  N  =/=  (/) ) )  ->  |^| N  e.  ( ( nei `  J
) `  S )
)

Proof of Theorem neificl
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simprl 733 . . 3  |-  ( ( N  C_  ( ( nei `  J ) `  S )  /\  ( N  e.  Fin  /\  N  =/=  (/) ) )  ->  N  e.  Fin )
2 innei 17112 . . . . . . . 8  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S )  /\  y  e.  ( ( nei `  J
) `  S )
)  ->  ( x  i^i  y )  e.  ( ( nei `  J
) `  S )
)
323expib 1156 . . . . . . 7  |-  ( J  e.  Top  ->  (
( x  e.  ( ( nei `  J
) `  S )  /\  y  e.  (
( nei `  J
) `  S )
)  ->  ( x  i^i  y )  e.  ( ( nei `  J
) `  S )
) )
43ralrimivv 2740 . . . . . 6  |-  ( J  e.  Top  ->  A. x  e.  ( ( nei `  J
) `  S ) A. y  e.  (
( nei `  J
) `  S )
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S ) )
5 fiint 7319 . . . . . 6  |-  ( A. x  e.  ( ( nei `  J ) `  S ) A. y  e.  ( ( nei `  J
) `  S )
( x  i^i  y
)  e.  ( ( nei `  J ) `
 S )  <->  A. x
( ( x  C_  ( ( nei `  J
) `  S )  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  ( ( nei `  J
) `  S )
) )
64, 5sylib 189 . . . . 5  |-  ( J  e.  Top  ->  A. x
( ( x  C_  ( ( nei `  J
) `  S )  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  ( ( nei `  J
) `  S )
) )
7 sseq1 3312 . . . . . . . . 9  |-  ( x  =  N  ->  (
x  C_  ( ( nei `  J ) `  S )  <->  N  C_  (
( nei `  J
) `  S )
) )
8 neeq1 2558 . . . . . . . . 9  |-  ( x  =  N  ->  (
x  =/=  (/)  <->  N  =/=  (/) ) )
9 eleq1 2447 . . . . . . . . 9  |-  ( x  =  N  ->  (
x  e.  Fin  <->  N  e.  Fin ) )
107, 8, 93anbi123d 1254 . . . . . . . 8  |-  ( x  =  N  ->  (
( x  C_  (
( nei `  J
) `  S )  /\  x  =/=  (/)  /\  x  e.  Fin )  <->  ( N  C_  ( ( nei `  J
) `  S )  /\  N  =/=  (/)  /\  N  e.  Fin ) ) )
11 3ancomb 945 . . . . . . . . 9  |-  ( ( N  C_  ( ( nei `  J ) `  S )  /\  N  =/=  (/)  /\  N  e. 
Fin )  <->  ( N  C_  ( ( nei `  J
) `  S )  /\  N  e.  Fin  /\  N  =/=  (/) ) )
12 3anass 940 . . . . . . . . 9  |-  ( ( N  C_  ( ( nei `  J ) `  S )  /\  N  e.  Fin  /\  N  =/=  (/) )  <->  ( N  C_  ( ( nei `  J
) `  S )  /\  ( N  e.  Fin  /\  N  =/=  (/) ) ) )
1311, 12bitri 241 . . . . . . . 8  |-  ( ( N  C_  ( ( nei `  J ) `  S )  /\  N  =/=  (/)  /\  N  e. 
Fin )  <->  ( N  C_  ( ( nei `  J
) `  S )  /\  ( N  e.  Fin  /\  N  =/=  (/) ) ) )
1410, 13syl6bb 253 . . . . . . 7  |-  ( x  =  N  ->  (
( x  C_  (
( nei `  J
) `  S )  /\  x  =/=  (/)  /\  x  e.  Fin )  <->  ( N  C_  ( ( nei `  J
) `  S )  /\  ( N  e.  Fin  /\  N  =/=  (/) ) ) ) )
15 inteq 3995 . . . . . . . 8  |-  ( x  =  N  ->  |^| x  =  |^| N )
1615eleq1d 2453 . . . . . . 7  |-  ( x  =  N  ->  ( |^| x  e.  (
( nei `  J
) `  S )  <->  |^| N  e.  ( ( nei `  J ) `
 S ) ) )
1714, 16imbi12d 312 . . . . . 6  |-  ( x  =  N  ->  (
( ( x  C_  ( ( nei `  J
) `  S )  /\  x  =/=  (/)  /\  x  e.  Fin )  ->  |^| x  e.  ( ( nei `  J
) `  S )
)  <->  ( ( N 
C_  ( ( nei `  J ) `  S
)  /\  ( N  e.  Fin  /\  N  =/=  (/) ) )  ->  |^| N  e.  ( ( nei `  J
) `  S )
) ) )
1817spcgv 2979 . . . . 5  |-  ( N  e.  Fin  ->  ( A. x ( ( x 
C_  ( ( nei `  J ) `  S
)  /\  x  =/=  (/) 
/\  x  e.  Fin )  ->  |^| x  e.  ( ( nei `  J
) `  S )
)  ->  ( ( N  C_  ( ( nei `  J ) `  S
)  /\  ( N  e.  Fin  /\  N  =/=  (/) ) )  ->  |^| N  e.  ( ( nei `  J
) `  S )
) ) )
196, 18syl5 30 . . . 4  |-  ( N  e.  Fin  ->  ( J  e.  Top  ->  (
( N  C_  (
( nei `  J
) `  S )  /\  ( N  e.  Fin  /\  N  =/=  (/) ) )  ->  |^| N  e.  ( ( nei `  J
) `  S )
) ) )
2019com3l 77 . . 3  |-  ( J  e.  Top  ->  (
( N  C_  (
( nei `  J
) `  S )  /\  ( N  e.  Fin  /\  N  =/=  (/) ) )  ->  ( N  e. 
Fin  ->  |^| N  e.  ( ( nei `  J
) `  S )
) ) )
211, 20mpdi 40 . 2  |-  ( J  e.  Top  ->  (
( N  C_  (
( nei `  J
) `  S )  /\  ( N  e.  Fin  /\  N  =/=  (/) ) )  ->  |^| N  e.  ( ( nei `  J
) `  S )
) )
2221impl 604 1  |-  ( ( ( J  e.  Top  /\  N  C_  ( ( nei `  J ) `  S ) )  /\  ( N  e.  Fin  /\  N  =/=  (/) ) )  ->  |^| N  e.  ( ( nei `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   A.wal 1546    = wceq 1649    e. wcel 1717    =/= wne 2550   A.wral 2649    i^i cin 3262    C_ wss 3263   (/)c0 3571   |^|cint 3992   ` cfv 5394   Fincfn 7045   Topctop 16881   neicnei 17084
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2368  ax-rep 4261  ax-sep 4271  ax-nul 4279  ax-pow 4318  ax-pr 4344  ax-un 4641
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2242  df-mo 2243  df-clab 2374  df-cleq 2380  df-clel 2383  df-nfc 2512  df-ne 2552  df-ral 2654  df-rex 2655  df-reu 2656  df-rab 2658  df-v 2901  df-sbc 3105  df-csb 3195  df-dif 3266  df-un 3268  df-in 3270  df-ss 3277  df-pss 3279  df-nul 3572  df-if 3683  df-pw 3744  df-sn 3763  df-pr 3764  df-tp 3765  df-op 3766  df-uni 3958  df-int 3993  df-iun 4037  df-br 4154  df-opab 4208  df-mpt 4209  df-tr 4244  df-eprel 4435  df-id 4439  df-po 4444  df-so 4445  df-fr 4482  df-we 4484  df-ord 4525  df-on 4526  df-lim 4527  df-suc 4528  df-om 4786  df-xp 4824  df-rel 4825  df-cnv 4826  df-co 4827  df-dm 4828  df-rn 4829  df-res 4830  df-ima 4831  df-iota 5358  df-fun 5396  df-fn 5397  df-f 5398  df-f1 5399  df-fo 5400  df-f1o 5401  df-fv 5402  df-ov 6023  df-oprab 6024  df-mpt2 6025  df-recs 6569  df-rdg 6604  df-1o 6660  df-oadd 6664  df-er 6841  df-en 7046  df-fin 7049  df-top 16886  df-nei 17085
  Copyright terms: Public domain W3C validator