MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neii2 Unicode version

Theorem neii2 16861
Description: Property of a neighborhood. (Contributed by NM, 12-Feb-2007.)
Assertion
Ref Expression
neii2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
Distinct variable groups:    g, J    g, N    S, g

Proof of Theorem neii2
StepHypRef Expression
1 eqid 2296 . . 3  |-  U. J  =  U. J
21neiss2 16854 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  S  C_  U. J )
31isnei 16856 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) ) )
4 simpr 447 . . . 4  |-  ( ( N  C_  U. J  /\  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
53, 4syl6bi 219 . . 3  |-  ( ( J  e.  Top  /\  S  C_  U. J )  ->  ( N  e.  ( ( nei `  J
) `  S )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
65impancom 427 . 2  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  -> 
( S  C_  U. J  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) ) )
72, 6mpd 14 1  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S ) )  ->  E. g  e.  J  ( S  C_  g  /\  g  C_  N ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    e. wcel 1696   E.wrex 2557    C_ wss 3165   U.cuni 3843   ` cfv 5271   Topctop 16647   neicnei 16850
This theorem is referenced by:  neiss  16862  ssnei  16863  ssnei2  16869  innei  16878  opnneiid  16879  neissex  16880  cnpnei  17009  hausnei2  17097  nlly2i  17218  neibastop2  26413
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-13 1698  ax-14 1700  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277  ax-rep 4147  ax-sep 4157  ax-nul 4165  ax-pow 4204  ax-pr 4230  ax-un 4528
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-eu 2160  df-mo 2161  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ne 2461  df-ral 2561  df-rex 2562  df-reu 2563  df-rab 2565  df-v 2803  df-sbc 3005  df-csb 3095  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-pw 3640  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-iun 3923  df-br 4040  df-opab 4094  df-mpt 4095  df-id 4325  df-xp 4711  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-res 4717  df-ima 4718  df-iota 5235  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276  df-fo 5277  df-f1o 5278  df-fv 5279  df-top 16652  df-nei 16851
  Copyright terms: Public domain W3C validator