Users' Mathboxes Mathbox for Jeff Hankins < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  neiin Unicode version

Theorem neiin 26027
Description: Two neighborhoods intersect to form a neighborhood of the intersection. (Contributed by Jeff Hankins, 31-Aug-2009.)
Assertion
Ref Expression
neiin  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  ( M  i^i  N )  e.  ( ( nei `  J
) `  ( A  i^i  B ) ) )

Proof of Theorem neiin
StepHypRef Expression
1 simpr 448 . . . . . . 7  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A ) )  ->  M  e.  ( ( nei `  J ) `  A ) )
2 simpl 444 . . . . . . . 8  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A ) )  ->  J  e.  Top )
3 eqid 2388 . . . . . . . . 9  |-  U. J  =  U. J
43neiss2 17089 . . . . . . . 8  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A ) )  ->  A  C_  U. J )
53neii1 17094 . . . . . . . 8  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A ) )  ->  M  C_  U. J )
63neiint 17092 . . . . . . . 8  |-  ( ( J  e.  Top  /\  A  C_  U. J  /\  M  C_  U. J )  ->  ( M  e.  ( ( nei `  J
) `  A )  <->  A 
C_  ( ( int `  J ) `  M
) ) )
72, 4, 5, 6syl3anc 1184 . . . . . . 7  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A ) )  -> 
( M  e.  ( ( nei `  J
) `  A )  <->  A 
C_  ( ( int `  J ) `  M
) ) )
81, 7mpbid 202 . . . . . 6  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A ) )  ->  A  C_  ( ( int `  J ) `  M
) )
9 ssinss1 3513 . . . . . 6  |-  ( A 
C_  ( ( int `  J ) `  M
)  ->  ( A  i^i  B )  C_  (
( int `  J
) `  M )
)
108, 9syl 16 . . . . 5  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A ) )  -> 
( A  i^i  B
)  C_  ( ( int `  J ) `  M ) )
11103adant3 977 . . . 4  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  ( A  i^i  B )  C_  (
( int `  J
) `  M )
)
12 inss2 3506 . . . . 5  |-  ( A  i^i  B )  C_  B
13 simpr 448 . . . . . . 7  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  B ) )  ->  N  e.  ( ( nei `  J ) `  B ) )
14 simpl 444 . . . . . . . 8  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  B ) )  ->  J  e.  Top )
153neiss2 17089 . . . . . . . 8  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  B ) )  ->  B  C_  U. J )
163neii1 17094 . . . . . . . 8  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  B ) )  ->  N  C_  U. J )
173neiint 17092 . . . . . . . 8  |-  ( ( J  e.  Top  /\  B  C_  U. J  /\  N  C_  U. J )  ->  ( N  e.  ( ( nei `  J
) `  B )  <->  B 
C_  ( ( int `  J ) `  N
) ) )
1814, 15, 16, 17syl3anc 1184 . . . . . . 7  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  B ) )  -> 
( N  e.  ( ( nei `  J
) `  B )  <->  B 
C_  ( ( int `  J ) `  N
) ) )
1913, 18mpbid 202 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  B ) )  ->  B  C_  ( ( int `  J ) `  N
) )
20193adant2 976 . . . . 5  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  B  C_  (
( int `  J
) `  N )
)
2112, 20syl5ss 3303 . . . 4  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  ( A  i^i  B )  C_  (
( int `  J
) `  N )
)
2211, 21ssind 3509 . . 3  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  ( A  i^i  B )  C_  (
( ( int `  J
) `  M )  i^i  ( ( int `  J
) `  N )
) )
23 simp1 957 . . . 4  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  J  e.  Top )
2453adant3 977 . . . 4  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  M  C_  U. J
)
25163adant2 976 . . . 4  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  N  C_  U. J
)
263ntrin 17049 . . . 4  |-  ( ( J  e.  Top  /\  M  C_  U. J  /\  N  C_  U. J )  ->  ( ( int `  J ) `  ( M  i^i  N ) )  =  ( ( ( int `  J ) `
 M )  i^i  ( ( int `  J
) `  N )
) )
2723, 24, 25, 26syl3anc 1184 . . 3  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  ( ( int `  J ) `  ( M  i^i  N ) )  =  ( ( ( int `  J
) `  M )  i^i  ( ( int `  J
) `  N )
) )
2822, 27sseqtr4d 3329 . 2  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  ( A  i^i  B )  C_  (
( int `  J
) `  ( M  i^i  N ) ) )
29 ssinss1 3513 . . . . 5  |-  ( A 
C_  U. J  ->  ( A  i^i  B )  C_  U. J )
304, 29syl 16 . . . 4  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A ) )  -> 
( A  i^i  B
)  C_  U. J )
31 ssinss1 3513 . . . . 5  |-  ( M 
C_  U. J  ->  ( M  i^i  N )  C_  U. J )
325, 31syl 16 . . . 4  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A ) )  -> 
( M  i^i  N
)  C_  U. J )
333neiint 17092 . . . 4  |-  ( ( J  e.  Top  /\  ( A  i^i  B ) 
C_  U. J  /\  ( M  i^i  N )  C_  U. J )  ->  (
( M  i^i  N
)  e.  ( ( nei `  J ) `
 ( A  i^i  B ) )  <->  ( A  i^i  B )  C_  (
( int `  J
) `  ( M  i^i  N ) ) ) )
342, 30, 32, 33syl3anc 1184 . . 3  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A ) )  -> 
( ( M  i^i  N )  e.  ( ( nei `  J ) `
 ( A  i^i  B ) )  <->  ( A  i^i  B )  C_  (
( int `  J
) `  ( M  i^i  N ) ) ) )
35343adant3 977 . 2  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  ( ( M  i^i  N )  e.  ( ( nei `  J
) `  ( A  i^i  B ) )  <->  ( A  i^i  B )  C_  (
( int `  J
) `  ( M  i^i  N ) ) ) )
3628, 35mpbird 224 1  |-  ( ( J  e.  Top  /\  M  e.  ( ( nei `  J ) `  A )  /\  N  e.  ( ( nei `  J
) `  B )
)  ->  ( M  i^i  N )  e.  ( ( nei `  J
) `  ( A  i^i  B ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    i^i cin 3263    C_ wss 3264   U.cuni 3958   ` cfv 5395   Topctop 16882   intcnt 17005   neicnei 17085
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369  ax-rep 4262  ax-sep 4272  ax-nul 4280  ax-pow 4319  ax-pr 4345  ax-un 4642
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2243  df-mo 2244  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-ne 2553  df-ral 2655  df-rex 2656  df-reu 2657  df-rab 2659  df-v 2902  df-sbc 3106  df-csb 3196  df-dif 3267  df-un 3269  df-in 3271  df-ss 3278  df-nul 3573  df-if 3684  df-pw 3745  df-sn 3764  df-pr 3765  df-op 3767  df-uni 3959  df-int 3994  df-iun 4038  df-iin 4039  df-br 4155  df-opab 4209  df-mpt 4210  df-id 4440  df-xp 4825  df-rel 4826  df-cnv 4827  df-co 4828  df-dm 4829  df-rn 4830  df-res 4831  df-ima 4832  df-iota 5359  df-fun 5397  df-fn 5398  df-f 5399  df-f1 5400  df-fo 5401  df-f1o 5402  df-fv 5403  df-top 16887  df-cld 17007  df-ntr 17008  df-cls 17009  df-nei 17086
  Copyright terms: Public domain W3C validator