MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neips Unicode version

Theorem neips 16850
Description: A neighborhood of a set is a neighborhood of every point in the set. Proposition of [BourbakiTop1] p. I.2. (Contributed by FL, 16-Nov-2006.)
Hypothesis
Ref Expression
neips.1  |-  X  = 
U. J
Assertion
Ref Expression
neips  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
Distinct variable groups:    J, p    N, p    S, p    X, p

Proof of Theorem neips
Dummy variables  g  h  v are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 snssi 3759 . . . . . 6  |-  ( p  e.  S  ->  { p }  C_  S )
2 neiss 16846 . . . . . 6  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  {
p }  C_  S
)  ->  N  e.  ( ( nei `  J
) `  { p } ) )
31, 2syl3an3 1217 . . . . 5  |-  ( ( J  e.  Top  /\  N  e.  ( ( nei `  J ) `  S )  /\  p  e.  S )  ->  N  e.  ( ( nei `  J
) `  { p } ) )
433exp 1150 . . . 4  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  (
p  e.  S  ->  N  e.  ( ( nei `  J ) `  { p } ) ) ) )
54ralrimdv 2632 . . 3  |-  ( J  e.  Top  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
653ad2ant1 976 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  ->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
7 r19.28zv 3549 . . . . 5  |-  ( S  =/=  (/)  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  (
p  e.  g  /\  g  C_  N ) )  <-> 
( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
873ad2ant3 978 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  <-> 
( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
9 ssrab2 3258 . . . . . . . . . 10  |-  { v  e.  J  |  v 
C_  N }  C_  J
10 uniopn 16643 . . . . . . . . . 10  |-  ( ( J  e.  Top  /\  { v  e.  J  | 
v  C_  N }  C_  J )  ->  U. {
v  e.  J  | 
v  C_  N }  e.  J )
119, 10mpan2 652 . . . . . . . . 9  |-  ( J  e.  Top  ->  U. {
v  e.  J  | 
v  C_  N }  e.  J )
1211ad2antrr 706 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  U. { v  e.  J  |  v 
C_  N }  e.  J )
13 sseq1 3199 . . . . . . . . . . . . . . . 16  |-  ( v  =  g  ->  (
v  C_  N  <->  g  C_  N ) )
1413elrab 2923 . . . . . . . . . . . . . . 15  |-  ( g  e.  { v  e.  J  |  v  C_  N }  <->  ( g  e.  J  /\  g  C_  N ) )
15 elunii 3832 . . . . . . . . . . . . . . 15  |-  ( ( p  e.  g  /\  g  e.  { v  e.  J  |  v  C_  N } )  ->  p  e.  U. { v  e.  J  |  v 
C_  N } )
1614, 15sylan2br 462 . . . . . . . . . . . . . 14  |-  ( ( p  e.  g  /\  ( g  e.  J  /\  g  C_  N ) )  ->  p  e.  U. { v  e.  J  |  v  C_  N }
)
1716an12s 776 . . . . . . . . . . . . 13  |-  ( ( g  e.  J  /\  ( p  e.  g  /\  g  C_  N ) )  ->  p  e.  U. { v  e.  J  |  v  C_  N }
)
1817rexlimiva 2662 . . . . . . . . . . . 12  |-  ( E. g  e.  J  ( p  e.  g  /\  g  C_  N )  ->  p  e.  U. { v  e.  J  |  v 
C_  N } )
1918ralimi 2618 . . . . . . . . . . 11  |-  ( A. p  e.  S  E. g  e.  J  (
p  e.  g  /\  g  C_  N )  ->  A. p  e.  S  p  e.  U. { v  e.  J  |  v 
C_  N } )
20 dfss3 3170 . . . . . . . . . . 11  |-  ( S 
C_  U. { v  e.  J  |  v  C_  N }  <->  A. p  e.  S  p  e.  U. { v  e.  J  |  v 
C_  N } )
2119, 20sylibr 203 . . . . . . . . . 10  |-  ( A. p  e.  S  E. g  e.  J  (
p  e.  g  /\  g  C_  N )  ->  S  C_  U. { v  e.  J  |  v 
C_  N } )
2221adantl 452 . . . . . . . . 9  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  S  C_  U. {
v  e.  J  | 
v  C_  N }
)
23 unissb 3857 . . . . . . . . . 10  |-  ( U. { v  e.  J  |  v  C_  N }  C_  N  <->  A. h  e.  {
v  e.  J  | 
v  C_  N }
h  C_  N )
24 sseq1 3199 . . . . . . . . . . . 12  |-  ( v  =  h  ->  (
v  C_  N  <->  h  C_  N
) )
2524elrab 2923 . . . . . . . . . . 11  |-  ( h  e.  { v  e.  J  |  v  C_  N }  <->  ( h  e.  J  /\  h  C_  N ) )
2625simprbi 450 . . . . . . . . . 10  |-  ( h  e.  { v  e.  J  |  v  C_  N }  ->  h  C_  N )
2723, 26mprgbir 2613 . . . . . . . . 9  |-  U. {
v  e.  J  | 
v  C_  N }  C_  N
2822, 27jctir 524 . . . . . . . 8  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  ( S  C_ 
U. { v  e.  J  |  v  C_  N }  /\  U. {
v  e.  J  | 
v  C_  N }  C_  N ) )
29 sseq2 3200 . . . . . . . . . 10  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( S  C_  h  <->  S  C_  U. {
v  e.  J  | 
v  C_  N }
) )
30 sseq1 3199 . . . . . . . . . 10  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( h  C_  N  <->  U. { v  e.  J  |  v 
C_  N }  C_  N ) )
3129, 30anbi12d 691 . . . . . . . . 9  |-  ( h  =  U. { v  e.  J  |  v 
C_  N }  ->  ( ( S  C_  h  /\  h  C_  N )  <-> 
( S  C_  U. {
v  e.  J  | 
v  C_  N }  /\  U. { v  e.  J  |  v  C_  N }  C_  N ) ) )
3231rspcev 2884 . . . . . . . 8  |-  ( ( U. { v  e.  J  |  v  C_  N }  e.  J  /\  ( S  C_  U. {
v  e.  J  | 
v  C_  N }  /\  U. { v  e.  J  |  v  C_  N }  C_  N ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
3312, 28, 32syl2anc 642 . . . . . . 7  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) )
3433ex 423 . . . . . 6  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N )  ->  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) )
3534anim2d 548 . . . . 5  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( ( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  -> 
( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
36353adant3 975 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  (
( N  C_  X  /\  A. p  e.  S  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
378, 36sylbid 206 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) )  ->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N
) ) ) )
38 ssel2 3175 . . . . . . 7  |-  ( ( S  C_  X  /\  p  e.  S )  ->  p  e.  X )
39 neips.1 . . . . . . . 8  |-  X  = 
U. J
4039isneip 16842 . . . . . . 7  |-  ( ( J  e.  Top  /\  p  e.  X )  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4138, 40sylan2 460 . . . . . 6  |-  ( ( J  e.  Top  /\  ( S  C_  X  /\  p  e.  S )
)  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4241anassrs 629 . . . . 5  |-  ( ( ( J  e.  Top  /\  S  C_  X )  /\  p  e.  S
)  ->  ( N  e.  ( ( nei `  J
) `  { p } )  <->  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4342ralbidva 2559 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } )  <->  A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
44433adant3 975 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  N  e.  ( ( nei `  J ) `  { p } )  <->  A. p  e.  S  ( N  C_  X  /\  E. g  e.  J  ( p  e.  g  /\  g  C_  N ) ) ) )
4539isnei 16840 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( N  e.  ( ( nei `  J
) `  S )  <->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
46453adant3 975 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  ( N  C_  X  /\  E. h  e.  J  ( S  C_  h  /\  h  C_  N ) ) ) )
4737, 44, 463imtr4d 259 . 2  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( A. p  e.  S  N  e.  ( ( nei `  J ) `  { p } )  ->  N  e.  ( ( nei `  J
) `  S )
) )
486, 47impbid 183 1  |-  ( ( J  e.  Top  /\  S  C_  X  /\  S  =/=  (/) )  ->  ( N  e.  ( ( nei `  J ) `  S )  <->  A. p  e.  S  N  e.  ( ( nei `  J
) `  { p } ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358    /\ w3a 934    = wceq 1623    e. wcel 1684    =/= wne 2446   A.wral 2543   E.wrex 2544   {crab 2547    C_ wss 3152   (/)c0 3455   {csn 3640   U.cuni 3827   ` cfv 5255   Topctop 16631   neicnei 16834
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-top 16636  df-nei 16835
  Copyright terms: Public domain W3C validator