MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  neiuni Unicode version

Theorem neiuni 16859
Description: The union of the neighborhoods of a set equals the topology's underlying set. (Contributed by FL, 18-Sep-2007.) (Revised by Mario Carneiro, 9-Apr-2015.)
Hypothesis
Ref Expression
tpnei.1  |-  X  = 
U. J
Assertion
Ref Expression
neiuni  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  =  U. (
( nei `  J
) `  S )
)

Proof of Theorem neiuni
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 tpnei.1 . . . . 5  |-  X  = 
U. J
21tpnei 16858 . . . 4  |-  ( J  e.  Top  ->  ( S  C_  X  <->  X  e.  ( ( nei `  J
) `  S )
) )
32biimpa 470 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  e.  ( ( nei `  J ) `  S ) )
4 elssuni 3855 . . 3  |-  ( X  e.  ( ( nei `  J ) `  S
)  ->  X  C_  U. (
( nei `  J
) `  S )
)
53, 4syl 15 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  C_  U. ( ( nei `  J ) `
 S ) )
61neii1 16843 . . . . . 6  |-  ( ( J  e.  Top  /\  x  e.  ( ( nei `  J ) `  S ) )  ->  x  C_  X )
76ex 423 . . . . 5  |-  ( J  e.  Top  ->  (
x  e.  ( ( nei `  J ) `
 S )  ->  x  C_  X ) )
87adantr 451 . . . 4  |-  ( ( J  e.  Top  /\  S  C_  X )  -> 
( x  e.  ( ( nei `  J
) `  S )  ->  x  C_  X )
)
98ralrimiv 2625 . . 3  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  A. x  e.  (
( nei `  J
) `  S )
x  C_  X )
10 unissb 3857 . . 3  |-  ( U. ( ( nei `  J
) `  S )  C_  X  <->  A. x  e.  ( ( nei `  J
) `  S )
x  C_  X )
119, 10sylibr 203 . 2  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  U. ( ( nei `  J
) `  S )  C_  X )
125, 11eqssd 3196 1  |-  ( ( J  e.  Top  /\  S  C_  X )  ->  X  =  U. (
( nei `  J
) `  S )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 358    = wceq 1623    e. wcel 1684   A.wral 2543    C_ wss 3152   U.cuni 3827   ` cfv 5255   Topctop 16631   neicnei 16834
This theorem is referenced by:  neifil  17575
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-13 1686  ax-14 1688  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264  ax-rep 4131  ax-sep 4141  ax-nul 4149  ax-pow 4188  ax-pr 4214  ax-un 4512
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-eu 2147  df-mo 2148  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ne 2448  df-ral 2548  df-rex 2549  df-reu 2550  df-rab 2552  df-v 2790  df-sbc 2992  df-csb 3082  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-pw 3627  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-iun 3907  df-br 4024  df-opab 4078  df-mpt 4079  df-id 4309  df-xp 4695  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-res 4701  df-ima 4702  df-iota 5219  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262  df-fv 5263  df-top 16636  df-nei 16835
  Copyright terms: Public domain W3C validator