Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  neldif Structured version   Unicode version

Theorem neldif 3472
 Description: Implication of membership in a class difference. (Contributed by NM, 28-Jun-1994.)
Assertion
Ref Expression
neldif

Proof of Theorem neldif
StepHypRef Expression
1 eldif 3330 . . . 4
21simplbi2 609 . . 3
32con1d 118 . 2
43imp 419 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 359   wcel 1725   cdif 3317 This theorem is referenced by:  peano5  4868  boxcutc  7105 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-v 2958  df-dif 3323
 Copyright terms: Public domain W3C validator