Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  nerabdioph Unicode version

Theorem nerabdioph 26562
Description: Diophantine set builder for inequality. This not quite trivial theorem touches on something important; Diophantine sets are not closed under negation, but they contain an important subclass that is, namely the recursive sets. With this theorem and De Morgan's laws, all quantifier-free formulae can be negated. (Contributed by Stefan O'Rear, 11-Oct-2014.)
Assertion
Ref Expression
nerabdioph  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =/=  B }  e.  (Dioph `  N
) )
Distinct variable group:    t, N
Allowed substitution hints:    A( t)    B( t)

Proof of Theorem nerabdioph
StepHypRef Expression
1 rabdiophlem1 26554 . . . 4  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) A  e.  ZZ )
2 rabdiophlem1 26554 . . . 4  |-  ( ( t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) B  e.  ZZ )
3 zre 10220 . . . . . . 7  |-  ( A  e.  ZZ  ->  A  e.  RR )
4 zre 10220 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  RR )
5 lttri2 9092 . . . . . . 7  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
63, 4, 5syl2an 464 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
76ralimi 2726 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  e.  ZZ  /\  B  e.  ZZ )  ->  A. t  e.  ( NN0  ^m  (
1 ... N ) ) ( A  =/=  B  <->  ( A  <  B  \/  B  <  A ) ) )
8 r19.26 2783 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  e.  ZZ  /\  B  e.  ZZ )  <->  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) A  e.  ZZ  /\  A. t  e.  ( NN0  ^m  (
1 ... N ) ) B  e.  ZZ ) )
9 rabbi 2831 . . . . 5  |-  ( A. t  e.  ( NN0  ^m  ( 1 ... N
) ) ( A  =/=  B  <->  ( A  <  B  \/  B  < 
A ) )  <->  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  A  =/=  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  ( A  < 
B  \/  B  < 
A ) } )
107, 8, 93imtr3i 257 . . . 4  |-  ( ( A. t  e.  ( NN0  ^m  ( 1 ... N ) ) A  e.  ZZ  /\  A. t  e.  ( NN0 
^m  ( 1 ... N ) ) B  e.  ZZ )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =/=  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  ( A  < 
B  \/  B  < 
A ) } )
111, 2, 10syl2an 464 . . 3  |-  ( ( ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =/=  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  ( A  < 
B  \/  B  < 
A ) } )
12113adant1 975 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =/=  B }  =  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  ( A  < 
B  \/  B  < 
A ) } )
13 ltrabdioph 26561 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  <  B }  e.  (Dioph `  N
) )
14 ltrabdioph 26561 . . . 4  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  B )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  A )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  B  <  A }  e.  (Dioph `  N
) )
15143com23 1159 . . 3  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  B  <  A }  e.  (Dioph `  N
) )
16 orrabdioph 26533 . . 3  |-  ( ( { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  <  B }  e.  (Dioph `  N
)  /\  { t  e.  ( NN0  ^m  (
1 ... N ) )  |  B  <  A }  e.  (Dioph `  N
) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N
) )  |  ( A  <  B  \/  B  <  A ) }  e.  (Dioph `  N
) )
1713, 15, 16syl2anc 643 . 2  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  ( A  < 
B  \/  B  < 
A ) }  e.  (Dioph `  N ) )
1812, 17eqeltrd 2463 1  |-  ( ( N  e.  NN0  /\  ( t  e.  ( ZZ  ^m  ( 1 ... N ) ) 
|->  A )  e.  (mzPoly `  ( 1 ... N
) )  /\  (
t  e.  ( ZZ 
^m  ( 1 ... N ) )  |->  B )  e.  (mzPoly `  ( 1 ... N
) ) )  ->  { t  e.  ( NN0  ^m  ( 1 ... N ) )  |  A  =/=  B }  e.  (Dioph `  N
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177    \/ wo 358    /\ wa 359    /\ w3a 936    = wceq 1649    e. wcel 1717    =/= wne 2552   A.wral 2651   {crab 2655   class class class wbr 4155    e. cmpt 4209   ` cfv 5396  (class class class)co 6022    ^m cmap 6956   RRcr 8924   1c1 8926    < clt 9055   NN0cn0 10155   ZZcz 10216   ...cfz 10977  mzPolycmzp 26472  Diophcdioph 26506
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-13 1719  ax-14 1721  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2370  ax-rep 4263  ax-sep 4273  ax-nul 4281  ax-pow 4320  ax-pr 4346  ax-un 4643  ax-inf2 7531  ax-cnex 8981  ax-resscn 8982  ax-1cn 8983  ax-icn 8984  ax-addcl 8985  ax-addrcl 8986  ax-mulcl 8987  ax-mulrcl 8988  ax-mulcom 8989  ax-addass 8990  ax-mulass 8991  ax-distr 8992  ax-i2m1 8993  ax-1ne0 8994  ax-1rid 8995  ax-rnegex 8996  ax-rrecex 8997  ax-cnre 8998  ax-pre-lttri 8999  ax-pre-lttrn 9000  ax-pre-ltadd 9001  ax-pre-mulgt0 9002
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-eu 2244  df-mo 2245  df-clab 2376  df-cleq 2382  df-clel 2385  df-nfc 2514  df-ne 2554  df-nel 2555  df-ral 2656  df-rex 2657  df-reu 2658  df-rmo 2659  df-rab 2660  df-v 2903  df-sbc 3107  df-csb 3197  df-dif 3268  df-un 3270  df-in 3272  df-ss 3279  df-pss 3281  df-nul 3574  df-if 3685  df-pw 3746  df-sn 3765  df-pr 3766  df-tp 3767  df-op 3768  df-uni 3960  df-int 3995  df-iun 4039  df-br 4156  df-opab 4210  df-mpt 4211  df-tr 4246  df-eprel 4437  df-id 4441  df-po 4446  df-so 4447  df-fr 4484  df-we 4486  df-ord 4527  df-on 4528  df-lim 4529  df-suc 4530  df-om 4788  df-xp 4826  df-rel 4827  df-cnv 4828  df-co 4829  df-dm 4830  df-rn 4831  df-res 4832  df-ima 4833  df-iota 5360  df-fun 5398  df-fn 5399  df-f 5400  df-f1 5401  df-fo 5402  df-f1o 5403  df-fv 5404  df-ov 6025  df-oprab 6026  df-mpt2 6027  df-of 6246  df-1st 6290  df-2nd 6291  df-riota 6487  df-recs 6571  df-rdg 6606  df-1o 6662  df-oadd 6666  df-er 6843  df-map 6958  df-en 7048  df-dom 7049  df-sdom 7050  df-fin 7051  df-card 7761  df-cda 7983  df-pnf 9057  df-mnf 9058  df-xr 9059  df-ltxr 9060  df-le 9061  df-sub 9227  df-neg 9228  df-nn 9935  df-n0 10156  df-z 10217  df-uz 10423  df-fz 10978  df-hash 11548  df-mzpcl 26473  df-mzp 26474  df-dioph 26507
  Copyright terms: Public domain W3C validator