MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf2 Unicode version

Theorem nf2 1810
Description: An alternative definition of df-nf 1535, which does not involve nested quantifiers on the same variable. (Contributed by Mario Carneiro, 24-Sep-2016.)
Assertion
Ref Expression
nf2  |-  ( F/ x ph  <->  ( E. x ph  ->  A. x ph ) )

Proof of Theorem nf2
StepHypRef Expression
1 df-nf 1535 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
2 nfa1 1768 . . 3  |-  F/ x A. x ph
3219.23 1809 . 2  |-  ( A. x ( ph  ->  A. x ph )  <->  ( E. x ph  ->  A. x ph ) )
41, 3bitri 240 1  |-  ( F/ x ph  <->  ( E. x ph  ->  A. x ph ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176   A.wal 1530   E.wex 1531   F/wnf 1534
This theorem is referenced by:  nf3  1811  nf4  1812  eusv2i  4547
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532  df-nf 1535
  Copyright terms: Public domain W3C validator