Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf3and Structured version   Unicode version

Theorem nf3and 1844
 Description: Deduction form of bound-variable hypothesis builder nf3an 1849. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.)
Hypotheses
Ref Expression
nfand.1
nfand.2
nfand.3
Assertion
Ref Expression
nf3and

Proof of Theorem nf3and
StepHypRef Expression
1 df-3an 938 . 2
2 nfand.1 . . . 4
3 nfand.2 . . . 4
42, 3nfand 1843 . . 3
5 nfand.3 . . 3
64, 5nfand 1843 . 2
71, 6nfxfrd 1580 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 359   w3a 936  wnf 1553 This theorem is referenced by:  riotasv2dOLD  6595 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator