MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nf3and Structured version   Unicode version

Theorem nf3and 1844
Description: Deduction form of bound-variable hypothesis builder nf3an 1849. (Contributed by NM, 17-Feb-2013.) (Revised by Mario Carneiro, 16-Oct-2016.)
Hypotheses
Ref Expression
nfand.1  |-  ( ph  ->  F/ x ps )
nfand.2  |-  ( ph  ->  F/ x ch )
nfand.3  |-  ( ph  ->  F/ x th )
Assertion
Ref Expression
nf3and  |-  ( ph  ->  F/ x ( ps 
/\  ch  /\  th )
)

Proof of Theorem nf3and
StepHypRef Expression
1 df-3an 938 . 2  |-  ( ( ps  /\  ch  /\  th )  <->  ( ( ps 
/\  ch )  /\  th ) )
2 nfand.1 . . . 4  |-  ( ph  ->  F/ x ps )
3 nfand.2 . . . 4  |-  ( ph  ->  F/ x ch )
42, 3nfand 1843 . . 3  |-  ( ph  ->  F/ x ( ps 
/\  ch ) )
5 nfand.3 . . 3  |-  ( ph  ->  F/ x th )
64, 5nfand 1843 . 2  |-  ( ph  ->  F/ x ( ( ps  /\  ch )  /\  th ) )
71, 6nfxfrd 1580 1  |-  ( ph  ->  F/ x ( ps 
/\  ch  /\  th )
)
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 359    /\ w3a 936   F/wnf 1553
This theorem is referenced by:  riotasv2dOLD  6595
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-11 1761
This theorem depends on definitions:  df-bi 178  df-an 361  df-3an 938  df-ex 1551  df-nf 1554
  Copyright terms: Public domain W3C validator