MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfa1-o Structured version   Unicode version

Theorem nfa1-o 2245
Description:  x is not free in  A. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfa1-o  |-  F/ x A. x ph

Proof of Theorem nfa1-o
StepHypRef Expression
1 hba1-o 2228 . 2  |-  ( A. x ph  ->  A. x A. x ph )
21nfi 1561 1  |-  F/ x A. x ph
Colors of variables: wff set class
Syntax hints:   A.wal 1550   F/wnf 1554
This theorem is referenced by:  ax10-16  2269  ax11eq  2272  ax11el  2273  ax11v2-o  2280
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-4 2214  ax-5o 2215  ax-6o 2216
This theorem depends on definitions:  df-bi 179  df-nf 1555
  Copyright terms: Public domain W3C validator