MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfa1-o Unicode version

Theorem nfa1-o 2105
Description:  x is not free in  A. x ph. (Contributed by Mario Carneiro, 11-Aug-2016.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
nfa1-o  |-  F/ x A. x ph

Proof of Theorem nfa1-o
StepHypRef Expression
1 hba1-o 2088 . 2  |-  ( A. x ph  ->  A. x A. x ph )
21nfi 1538 1  |-  F/ x A. x ph
Colors of variables: wff set class
Syntax hints:   A.wal 1527   F/wnf 1531
This theorem is referenced by:  ax10-16  2129  ax11eq  2132  ax11el  2133  ax11v2-o  2140
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-4 2074  ax-5o 2075  ax-6o 2076
This theorem depends on definitions:  df-bi 177  df-nf 1532
  Copyright terms: Public domain W3C validator