MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfaba1 Structured version   Unicode version

Theorem nfaba1 2577
Description: Bound-variable hypothesis builder for a class abstraction. (Contributed by Mario Carneiro, 14-Oct-2016.)
Assertion
Ref Expression
nfaba1  |-  F/_ x { y  |  A. x ph }

Proof of Theorem nfaba1
StepHypRef Expression
1 nfa1 1806 . 2  |-  F/ x A. x ph
21nfab 2576 1  |-  F/_ x { y  |  A. x ph }
Colors of variables: wff set class
Syntax hints:   A.wal 1549   {cab 2422   F/_wnfc 2559
This theorem is referenced by:  nfopd  4001  nfimad  5212  nfiota1  5420  nffvd  5737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-nfc 2561
  Copyright terms: Public domain W3C validator