Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbidf Structured version   Unicode version

Theorem nfbidf 1790
 Description: An equality theorem for effectively not free. (Contributed by Mario Carneiro, 4-Oct-2016.)
Hypotheses
Ref Expression
nfbidf.1
nfbidf.2
Assertion
Ref Expression
nfbidf

Proof of Theorem nfbidf
StepHypRef Expression
1 nfbidf.1 . . 3
2 nfbidf.2 . . . 4
31, 2albid 1788 . . . 4
42, 3imbi12d 312 . . 3
51, 4albid 1788 . 2
6 df-nf 1554 . 2
7 df-nf 1554 . 2
85, 6, 73bitr4g 280 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 177  wal 1549  wnf 1553 This theorem is referenced by:  drnf2  2058  dvelimdf  2066  nfsb4tOLD  2155  dvelimdfOLD  2157  nfcjust  2559  nfceqdf  2570  nfsb4twAUX7  29477  nfsb4tOLD7  29646  nfsb4tw2AUXOLD7  29647  dvelimdfOLD7  29652 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-ex 1551  df-nf 1554
 Copyright terms: Public domain W3C validator