MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfbii Structured version   Unicode version

Theorem nfbii 1578
Description: Equality theorem for not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfbii.1  |-  ( ph  <->  ps )
Assertion
Ref Expression
nfbii  |-  ( F/ x ph  <->  F/ x ps )

Proof of Theorem nfbii
StepHypRef Expression
1 nfbii.1 . . . 4  |-  ( ph  <->  ps )
21albii 1575 . . . 4  |-  ( A. x ph  <->  A. x ps )
31, 2imbi12i 317 . . 3  |-  ( (
ph  ->  A. x ph )  <->  ( ps  ->  A. x ps ) )
43albii 1575 . 2  |-  ( A. x ( ph  ->  A. x ph )  <->  A. x
( ps  ->  A. x ps ) )
5 df-nf 1554 . 2  |-  ( F/ x ph  <->  A. x
( ph  ->  A. x ph ) )
6 df-nf 1554 . 2  |-  ( F/ x ps  <->  A. x
( ps  ->  A. x ps ) )
74, 5, 63bitr4i 269 1  |-  ( F/ x ph  <->  F/ x ps )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 177   A.wal 1549   F/wnf 1553
This theorem is referenced by:  nfxfr  1579  nfxfrd  1580  dvelimhw  1876  nfceqi  2568  dfnfc2  4033  wl-nfnbi  26233  iunconlem2  29047  nfsb4tw2AUXOLD7  29746  sbcomOLD7  29755  sb9iOLD7  29758
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566
This theorem depends on definitions:  df-bi 178  df-nf 1554
  Copyright terms: Public domain W3C validator