Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfccdeq Structured version   Unicode version

Theorem nfccdeq 3161
 Description: Variation of nfcdeq 3160 for classes. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfccdeq.1
nfccdeq.2 CondEq
Assertion
Ref Expression
nfccdeq
Distinct variable groups:   ,   ,
Allowed substitution hints:   ()   ()

Proof of Theorem nfccdeq
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfccdeq.1 . . . 4
21nfcri 2568 . . 3
3 equid 1689 . . . . 5
43cdeqth 3150 . . . 4 CondEq
5 nfccdeq.2 . . . 4 CondEq
64, 5cdeqel 3159 . . 3 CondEq
72, 6nfcdeq 3160 . 2
87eqriv 2435 1
 Colors of variables: wff set class Syntax hints:   wceq 1653   wcel 1726  wnfc 2561  CondEqwcdeq 3146 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-cleq 2431  df-clel 2434  df-nfc 2563  df-cdeq 3147
 Copyright terms: Public domain W3C validator