MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcd Structured version   Unicode version

Theorem nfcd 2569
Description: Deduce that a class  A does not have  x free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcd.1  |-  F/ y
ph
nfcd.2  |-  ( ph  ->  F/ x  y  e.  A )
Assertion
Ref Expression
nfcd  |-  ( ph  -> 
F/_ x A )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem nfcd
StepHypRef Expression
1 nfcd.1 . . 3  |-  F/ y
ph
2 nfcd.2 . . 3  |-  ( ph  ->  F/ x  y  e.  A )
31, 2alrimi 1782 . 2  |-  ( ph  ->  A. y F/ x  y  e.  A )
4 df-nfc 2563 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
53, 4sylibr 205 1  |-  ( ph  -> 
F/_ x A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1550   F/wnf 1554    e. wcel 1726   F/_wnfc 2561
This theorem is referenced by:  nfabd2  2592  dvelimdc  2594  sbnfc2  3311  riotasv2dOLD  6597
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-11 1762
This theorem depends on definitions:  df-bi 179  df-ex 1552  df-nf 1555  df-nfc 2563
  Copyright terms: Public domain W3C validator