MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcd Unicode version

Theorem nfcd 2427
Description: Deduce that a class  A does not have  x free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypotheses
Ref Expression
nfcd.1  |-  F/ y
ph
nfcd.2  |-  ( ph  ->  F/ x  y  e.  A )
Assertion
Ref Expression
nfcd  |-  ( ph  -> 
F/_ x A )
Distinct variable groups:    x, y    y, A
Allowed substitution hints:    ph( x, y)    A( x)

Proof of Theorem nfcd
StepHypRef Expression
1 nfcd.1 . . 3  |-  F/ y
ph
2 nfcd.2 . . 3  |-  ( ph  ->  F/ x  y  e.  A )
31, 2alrimi 1757 . 2  |-  ( ph  ->  A. y F/ x  y  e.  A )
4 df-nfc 2421 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
53, 4sylibr 203 1  |-  ( ph  -> 
F/_ x A )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1530   F/wnf 1534    e. wcel 1696   F/_wnfc 2419
This theorem is referenced by:  nfabd2  2450  dvelimdc  2452  sbnfc2  3154  riotasv2dOLD  6366
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-11 1727
This theorem depends on definitions:  df-bi 177  df-nf 1535  df-nfc 2421
  Copyright terms: Public domain W3C validator