Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfceqi Unicode version

Theorem nfceqi 2448
 Description: Equality theorem for class not-free. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfceqi.1
Assertion
Ref Expression
nfceqi

Proof of Theorem nfceqi
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 nfceqi.1 . . . . 5
21eleq2i 2380 . . . 4
32nfbii 1560 . . 3
43albii 1557 . 2
5 df-nfc 2441 . 2
6 df-nfc 2441 . 2
74, 5, 63bitr4i 268 1
 Colors of variables: wff set class Syntax hints:   wb 176  wal 1531  wnf 1535   wceq 1633   wcel 1701  wnfc 2439 This theorem is referenced by:  nfcxfr  2449  nfcxfrd  2450  ballotlem7  23967 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1537  ax-5 1548  ax-17 1607  ax-9 1645  ax-8 1666  ax-11 1732  ax-ext 2297 This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1533  df-nf 1536  df-cleq 2309  df-clel 2312  df-nfc 2441
 Copyright terms: Public domain W3C validator