MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfci Unicode version

Theorem nfci 2409
Description: Deduce that a class  A does not have  x free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfci.1  |-  F/ x  y  e.  A
Assertion
Ref Expression
nfci  |-  F/_ x A
Distinct variable groups:    x, y    y, A
Allowed substitution hint:    A( x)

Proof of Theorem nfci
StepHypRef Expression
1 df-nfc 2408 . 2  |-  ( F/_ x A  <->  A. y F/ x  y  e.  A )
2 nfci.1 . 2  |-  F/ x  y  e.  A
31, 2mpgbir 1537 1  |-  F/_ x A
Colors of variables: wff set class
Syntax hints:   F/wnf 1531    e. wcel 1684   F/_wnfc 2406
This theorem is referenced by:  nfcii  2410  nfcv  2419  nfab1  2421  nfab  2423  measiun  23545  climsuse  27734  climinff  27737
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533
This theorem depends on definitions:  df-bi 177  df-nfc 2408
  Copyright terms: Public domain W3C validator