Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcii Structured version   Unicode version

Theorem nfcii 2563
 Description: Deduce that a class does not have free in it. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfcii.1
Assertion
Ref Expression
nfcii
Distinct variable groups:   ,   ,
Allowed substitution hint:   ()

Proof of Theorem nfcii
StepHypRef Expression
1 nfcii.1 . . 3
21nfi 1560 . 2
32nfci 2562 1
 Colors of variables: wff set class Syntax hints:   wi 4  wal 1549   wcel 1725  wnfc 2559 This theorem is referenced by:  bnj1316  29192  bnj1385  29204  bnj1400  29207  bnj1468  29217  bnj1534  29224  bnj1542  29228  bnj1228  29380  bnj1307  29392  bnj1448  29416  bnj1466  29422  bnj1463  29424  bnj1491  29426  bnj1312  29427  bnj1498  29430  bnj1520  29435  bnj1525  29438  bnj1529  29439  bnj1523  29440 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555 This theorem depends on definitions:  df-bi 178  df-nf 1554  df-nfc 2561
 Copyright terms: Public domain W3C validator