Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcrd Structured version   Unicode version

Theorem nfcrd 2584
 Description: Consequence of the not-free predicate. (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfeqd.1
Assertion
Ref Expression
nfcrd
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,)   ()

Proof of Theorem nfcrd
StepHypRef Expression
1 nfeqd.1 . 2
2 nfcr 2563 . 2
31, 2syl 16 1
 Colors of variables: wff set class Syntax hints:   wi 4  wnf 1553   wcel 1725  wnfc 2558 This theorem is referenced by:  nfeqd  2585  nfeld  2586  dvelimdc  2591  nfcsbd  3276  nfifd  3754  axextnd  8458  axrepndlem1  8459  axunndlem1  8462  axregnd  8471  axextdist  25419 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-11 1761 This theorem depends on definitions:  df-bi 178  df-ex 1551  df-nfc 2560
 Copyright terms: Public domain W3C validator