MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsbd Unicode version

Theorem nfcsbd 3127
Description: Deduction version of nfcsb 3128. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfcsbd.1  |-  F/ y
ph
nfcsbd.2  |-  ( ph  -> 
F/_ x A )
nfcsbd.3  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfcsbd  |-  ( ph  -> 
F/_ x [_ A  /  y ]_ B
)

Proof of Theorem nfcsbd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-csb 3095 . 2  |-  [_ A  /  y ]_ B  =  { z  |  [. A  /  y ]. z  e.  B }
2 nfv 1609 . . 3  |-  F/ z
ph
3 nfcsbd.1 . . . 4  |-  F/ y
ph
4 nfcsbd.2 . . . 4  |-  ( ph  -> 
F/_ x A )
5 nfcsbd.3 . . . . 5  |-  ( ph  -> 
F/_ x B )
65nfcrd 2445 . . . 4  |-  ( ph  ->  F/ x  z  e.  B )
73, 4, 6nfsbcd 3024 . . 3  |-  ( ph  ->  F/ x [. A  /  y ]. z  e.  B )
82, 7nfabd 2451 . 2  |-  ( ph  -> 
F/_ x { z  |  [. A  / 
y ]. z  e.  B } )
91, 8nfcxfrd 2430 1  |-  ( ph  -> 
F/_ x [_ A  /  y ]_ B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1534    e. wcel 1696   {cab 2282   F/_wnfc 2419   [.wsbc 3004   [_csb 3094
This theorem is referenced by:  nfcsb  3128
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-sbc 3005  df-csb 3095
  Copyright terms: Public domain W3C validator