MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsbd Structured version   Unicode version

Theorem nfcsbd 3276
Description: Deduction version of nfcsb 3277. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfcsbd.1  |-  F/ y
ph
nfcsbd.2  |-  ( ph  -> 
F/_ x A )
nfcsbd.3  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfcsbd  |-  ( ph  -> 
F/_ x [_ A  /  y ]_ B
)

Proof of Theorem nfcsbd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 df-csb 3244 . 2  |-  [_ A  /  y ]_ B  =  { z  |  [. A  /  y ]. z  e.  B }
2 nfv 1629 . . 3  |-  F/ z
ph
3 nfcsbd.1 . . . 4  |-  F/ y
ph
4 nfcsbd.2 . . . 4  |-  ( ph  -> 
F/_ x A )
5 nfcsbd.3 . . . . 5  |-  ( ph  -> 
F/_ x B )
65nfcrd 2584 . . . 4  |-  ( ph  ->  F/ x  z  e.  B )
73, 4, 6nfsbcd 3173 . . 3  |-  ( ph  ->  F/ x [. A  /  y ]. z  e.  B )
82, 7nfabd 2590 . 2  |-  ( ph  -> 
F/_ x { z  |  [. A  / 
y ]. z  e.  B } )
91, 8nfcxfrd 2569 1  |-  ( ph  -> 
F/_ x [_ A  /  y ]_ B
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/wnf 1553    e. wcel 1725   {cab 2421   F/_wnfc 2558   [.wsbc 3153   [_csb 3243
This theorem is referenced by:  nfcsb  3277
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-sbc 3154  df-csb 3244
  Copyright terms: Public domain W3C validator