Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfcsbd Structured version   Unicode version

Theorem nfcsbd 3276
 Description: Deduction version of nfcsb 3277. (Contributed by NM, 21-Nov-2005.) (Revised by Mario Carneiro, 12-Oct-2016.)
Hypotheses
Ref Expression
nfcsbd.1
nfcsbd.2
nfcsbd.3
Assertion
Ref Expression
nfcsbd

Proof of Theorem nfcsbd
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-csb 3244 . 2
2 nfv 1629 . . 3
3 nfcsbd.1 . . . 4
4 nfcsbd.2 . . . 4
5 nfcsbd.3 . . . . 5
65nfcrd 2584 . . . 4
73, 4, 6nfsbcd 3173 . . 3
82, 7nfabd 2590 . 2
91, 8nfcxfrd 2569 1
 Colors of variables: wff set class Syntax hints:   wi 4  wnf 1553   wcel 1725  cab 2421  wnfc 2558  wsbc 3153  csb 3243 This theorem is referenced by:  nfcsb  3277 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-sbc 3154  df-csb 3244
 Copyright terms: Public domain W3C validator