Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfdisj1 Structured version   Unicode version

Theorem nfdisj1 4198
 Description: Bound-variable hypothesis builder for disjoint collection. (Contributed by Mario Carneiro, 14-Nov-2016.)
Assertion
Ref Expression
nfdisj1 Disj

Proof of Theorem nfdisj1
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-disj 4186 . 2 Disj
2 nfrmo1 2881 . . 3
32nfal 1865 . 2
41, 3nfxfr 1580 1 Disj
 Colors of variables: wff set class Syntax hints:  wal 1550  wnf 1554   wcel 1726  wrmo 2710  Disj wdisj 4185 This theorem is referenced by:  disjabrex  24029  disjabrexf  24030  hasheuni  24480  measvunilem  24571  measvunilem0  24572  measvuni  24573  measinblem  24579  voliune  24590  volfiniune  24591  volmeas  24592  dstrvprob  24734 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762 This theorem depends on definitions:  df-bi 179  df-ex 1552  df-nf 1555  df-eu 2287  df-mo 2288  df-rmo 2715  df-disj 4186
 Copyright terms: Public domain W3C validator