MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeq1 Unicode version

Theorem nfeq1 2441
Description: Hypothesis builder for equality, special case. (Contributed by Mario Carneiro, 10-Oct-2016.)
Hypothesis
Ref Expression
nfeq1.1  |-  F/_ x A
Assertion
Ref Expression
nfeq1  |-  F/ x  A  =  B
Distinct variable group:    x, B
Allowed substitution hint:    A( x)

Proof of Theorem nfeq1
StepHypRef Expression
1 nfeq1.1 . 2  |-  F/_ x A
2 nfcv 2432 . 2  |-  F/_ x B
31, 2nfeq 2439 1  |-  F/ x  A  =  B
Colors of variables: wff set class
Syntax hints:   F/wnf 1534    = wceq 1632   F/_wnfc 2419
This theorem is referenced by:  euabsn  3712  disjxun  4037  reusv6OLD  4561  fvmptt  5631  ovmpt2dv2  5997  ov3  6000  opabiotafun  6307  eusvobj2  6353  dom2lem  6917  pwfseqlem2  8297  zsum  12207  fsumf1o  12212  isummulc2  12241  fsum00  12272  isumshft  12314  iserodd  12904  yonedalem4b  14066  gsum2d2lem  15240  elptr2  17285  ovoliunnul  18882  mbfinf  19036  itg2splitlem  19119  dgrle  19641  zprod  24160  fprodf1o  24172  nfprod1  25413  nfprod  25414  finminlem  26334  eq0rabdioph  26959  monotoddzz  27131  bnj958  29288  bnj1491  29403  cdleme43fsv1snlem  31231  ltrniotaval  31392  cdlemksv2  31658  cdlemkuv2  31678  cdlemk36  31724  cdlemkid  31747  cdlemk19x  31754
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-cleq 2289  df-clel 2292  df-nfc 2421
  Copyright terms: Public domain W3C validator