Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeqf Structured version   Unicode version

Theorem nfeqf 2010
 Description: A variable is effectively not free in an equality if it is not either of the involved variables. version of ax-12o 2220. (Contributed by Mario Carneiro, 6-Oct-2016.) (Proof shortened by Wolf Lammen, 29-Apr-2018.)
Assertion
Ref Expression
nfeqf

Proof of Theorem nfeqf
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 ax12v 1952 . . 3
21ax12olem3 2008 . 2
3 ax12v 1952 . . 3
43ax12olem3 2008 . 2
52, 4ax12olem4 2009 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wa 360  wal 1550  wnf 1554 This theorem is referenced by:  ax12o  2011  dvelimf  2069  equvini  2084  equviniOLD  2085  equveli  2086  equveliOLD  2087  nfsb4tOLD  2129  sbcom  2165  sbcomOLD  2166  nfeud2  2294  wl-exeq  26235 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555
 Copyright terms: Public domain W3C validator