Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeu Structured version   Unicode version

Theorem nfeu 2296
 Description: Bound-variable hypothesis builder for uniqueness. Note that and needn't be distinct (this makes the proof more difficult). (Contributed by NM, 8-Mar-1995.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypothesis
Ref Expression
nfeu.1
Assertion
Ref Expression
nfeu

Proof of Theorem nfeu
StepHypRef Expression
1 nftru 1563 . . 3
2 nfeu.1 . . . 4
32a1i 11 . . 3
41, 3nfeud 2294 . 2
54trud 1332 1
 Colors of variables: wff set class Syntax hints:   wtru 1325  wnf 1553  weu 2280 This theorem is referenced by:  2eu7  2366  2eu8  2367  eusv2nf  4713  reusv2lem3  4718  bnj1489  29362 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-eu 2284
 Copyright terms: Public domain W3C validator