Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfeud2 Structured version   Unicode version

Theorem nfeud2 2293
 Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
nfeud2.1
nfeud2.2
Assertion
Ref Expression
nfeud2

Proof of Theorem nfeud2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-eu 2285 . 2
2 nfv 1629 . . 3
3 nfeud2.1 . . . . 5
4 nfnae 2044 . . . . 5
53, 4nfan 1846 . . . 4
6 nfeud2.2 . . . . . 6
76adantlr 696 . . . . 5
8 nfeqf 2009 . . . . . . 7
98ancoms 440 . . . . . 6
109adantll 695 . . . . 5
117, 10nfbid 1854 . . . 4
125, 11nfald2 2064 . . 3
132, 12nfexd2 2065 . 2
141, 13nfxfrd 1580 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 177   wa 359  wal 1549  wex 1550  wnf 1553  weu 2281 This theorem is referenced by:  nfmod2  2294  nfeud  2295  nfreud  2880 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-eu 2285
 Copyright terms: Public domain W3C validator