MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff1 Unicode version

Theorem nff1 5451
Description: Bound-variable hypothesis builder for a one-to-one function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1.1  |-  F/_ x F
nff1.2  |-  F/_ x A
nff1.3  |-  F/_ x B
Assertion
Ref Expression
nff1  |-  F/ x  F : A -1-1-> B

Proof of Theorem nff1
StepHypRef Expression
1 df-f1 5276 . 2  |-  ( F : A -1-1-> B  <->  ( F : A --> B  /\  Fun  `' F ) )
2 nff1.1 . . . 4  |-  F/_ x F
3 nff1.2 . . . 4  |-  F/_ x A
4 nff1.3 . . . 4  |-  F/_ x B
52, 3, 4nff 5403 . . 3  |-  F/ x  F : A --> B
62nfcnv 4876 . . . 4  |-  F/_ x `' F
76nffun 5293 . . 3  |-  F/ x Fun  `' F
85, 7nfan 1783 . 2  |-  F/ x
( F : A --> B  /\  Fun  `' F
)
91, 8nfxfr 1560 1  |-  F/ x  F : A -1-1-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 358   F/wnf 1534   F/_wnfc 2419   `'ccnv 4704   Fun wfun 5265   -->wf 5267   -1-1->wf1 5268
This theorem is referenced by:  nff1o  5486  iundom2g  8178
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-rel 4712  df-cnv 4713  df-co 4714  df-dm 4715  df-rn 4716  df-fun 5273  df-fn 5274  df-f 5275  df-f1 5276
  Copyright terms: Public domain W3C validator