MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nff1o Unicode version

Theorem nff1o 5470
Description: Bound-variable hypothesis builder for a one-to-one onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nff1o.1  |-  F/_ x F
nff1o.2  |-  F/_ x A
nff1o.3  |-  F/_ x B
Assertion
Ref Expression
nff1o  |-  F/ x  F : A -1-1-onto-> B

Proof of Theorem nff1o
StepHypRef Expression
1 df-f1o 5262 . 2  |-  ( F : A -1-1-onto-> B  <->  ( F : A -1-1-> B  /\  F : A -onto-> B ) )
2 nff1o.1 . . . 4  |-  F/_ x F
3 nff1o.2 . . . 4  |-  F/_ x A
4 nff1o.3 . . . 4  |-  F/_ x B
52, 3, 4nff1 5435 . . 3  |-  F/ x  F : A -1-1-> B
62, 3, 4nffo 5450 . . 3  |-  F/ x  F : A -onto-> B
75, 6nfan 1771 . 2  |-  F/ x
( F : A -1-1-> B  /\  F : A -onto-> B )
81, 7nfxfr 1557 1  |-  F/ x  F : A -1-1-onto-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 358   F/wnf 1531   F/_wnfc 2406   -1-1->wf1 5252   -onto->wfo 5253   -1-1-onto->wf1o 5254
This theorem is referenced by:  nfiso  5821  nfsum1  12163  nfsum  12164  stoweidlem35  27784
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-fun 5257  df-fn 5258  df-f 5259  df-f1 5260  df-fo 5261  df-f1o 5262
  Copyright terms: Public domain W3C validator