MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffo Unicode version

Theorem nffo 5450
Description: Bound-variable hypothesis builder for an onto function. (Contributed by NM, 16-May-2004.)
Hypotheses
Ref Expression
nffo.1  |-  F/_ x F
nffo.2  |-  F/_ x A
nffo.3  |-  F/_ x B
Assertion
Ref Expression
nffo  |-  F/ x  F : A -onto-> B

Proof of Theorem nffo
StepHypRef Expression
1 df-fo 5261 . 2  |-  ( F : A -onto-> B  <->  ( F  Fn  A  /\  ran  F  =  B ) )
2 nffo.1 . . . 4  |-  F/_ x F
3 nffo.2 . . . 4  |-  F/_ x A
42, 3nffn 5340 . . 3  |-  F/ x  F  Fn  A
52nfrn 4921 . . . 4  |-  F/_ x ran  F
6 nffo.3 . . . 4  |-  F/_ x B
75, 6nfeq 2426 . . 3  |-  F/ x ran  F  =  B
84, 7nfan 1771 . 2  |-  F/ x
( F  Fn  A  /\  ran  F  =  B )
91, 8nfxfr 1557 1  |-  F/ x  F : A -onto-> B
Colors of variables: wff set class
Syntax hints:    /\ wa 358   F/wnf 1531    = wceq 1623   F/_wnfc 2406   ran crn 4690    Fn wfn 5250   -onto->wfo 5253
This theorem is referenced by:  nff1o  5470
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-br 4024  df-opab 4078  df-rel 4696  df-cnv 4697  df-co 4698  df-dm 4699  df-rn 4700  df-fun 5257  df-fn 5258  df-fo 5261
  Copyright terms: Public domain W3C validator