Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nffun Structured version   Unicode version

Theorem nffun 5476
 Description: Bound-variable hypothesis builder for a function. (Contributed by NM, 30-Jan-2004.)
Hypothesis
Ref Expression
nffun.1
Assertion
Ref Expression
nffun

Proof of Theorem nffun
StepHypRef Expression
1 df-fun 5456 . 2
2 nffun.1 . . . 4
32nfrel 4962 . . 3
42nfcnv 5051 . . . . 5
52, 4nfco 5038 . . . 4
6 nfcv 2572 . . . 4
75, 6nfss 3341 . . 3
83, 7nfan 1846 . 2
91, 8nfxfr 1579 1
 Colors of variables: wff set class Syntax hints:   wa 359  wnf 1553  wnfc 2559   wss 3320   cid 4493  ccnv 4877   ccom 4882   wrel 4883   wfun 5448 This theorem is referenced by:  nffn  5541  nff1  5637  fliftfun  6034  funimass4f  24044  nfdfat  27970 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2423  df-cleq 2429  df-clel 2432  df-nfc 2561  df-ral 2710  df-rab 2714  df-v 2958  df-dif 3323  df-un 3325  df-in 3327  df-ss 3334  df-nul 3629  df-if 3740  df-sn 3820  df-pr 3821  df-op 3823  df-br 4213  df-opab 4267  df-rel 4885  df-cnv 4886  df-co 4887  df-fun 5456
 Copyright terms: Public domain W3C validator