MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiota Unicode version

Theorem nfiota 5239
Description: Bound-variable hypothesis builder for the  iota class. (Contributed by NM, 23-Aug-2011.)
Hypothesis
Ref Expression
nfiota.1  |-  F/ x ph
Assertion
Ref Expression
nfiota  |-  F/_ x
( iota y ph )

Proof of Theorem nfiota
StepHypRef Expression
1 nftru 1544 . . 3  |-  F/ y  T.
2 nfiota.1 . . . 4  |-  F/ x ph
32a1i 10 . . 3  |-  (  T. 
->  F/ x ph )
41, 3nfiotad 5238 . 2  |-  (  T. 
->  F/_ x ( iota y ph ) )
54trud 1314 1  |-  F/_ x
( iota y ph )
Colors of variables: wff set class
Syntax hints:    T. wtru 1307   F/wnf 1534   F/_wnfc 2419   iotacio 5233
This theorem is referenced by:  csbiotag  5264  nffv  5548  nfsum1  12179  nfsum  12180  nfcprod1  24132  nfcprod  24133
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-sn 3659  df-uni 3844  df-iota 5235
  Copyright terms: Public domain W3C validator