Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiotad Structured version   Unicode version

 Description: Deduction version of nfiota 5424. (Contributed by NM, 18-Feb-2013.)
Hypotheses
Ref Expression
Assertion
Ref Expression

Dummy variable is distinct from all other variables.
StepHypRef Expression
1 dfiota2 5421 . 2
2 nfv 1630 . . . 4
3 nfiotad.1 . . . . 5
4 nfiotad.2 . . . . . . 7
54adantr 453 . . . . . 6
6 nfcvf 2596 . . . . . . . 8
76adantl 454 . . . . . . 7
8 nfcvd 2575 . . . . . . 7
97, 8nfeqd 2588 . . . . . 6
105, 9nfbid 1855 . . . . 5
113, 10nfald2 2065 . . . 4
122, 11nfabd 2593 . . 3
1312nfunid 4024 . 2
141, 13nfcxfrd 2572 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4   wb 178   wa 360  wal 1550  wnf 1554  cab 2424  wnfc 2561  cuni 4017  cio 5418 This theorem is referenced by:  nfiota  5424  nfriotad  6560 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-ral 2712  df-rex 2713  df-sn 3822  df-uni 4018  df-iota 5420
 Copyright terms: Public domain W3C validator