MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfiso Unicode version

Theorem nfiso 6035
Description: Bound-variable hypothesis builder for an isomorphism. (Contributed by NM, 17-May-2004.) (Proof shortened by Andrew Salmon, 22-Oct-2011.)
Hypotheses
Ref Expression
nfiso.1  |-  F/_ x H
nfiso.2  |-  F/_ x R
nfiso.3  |-  F/_ x S
nfiso.4  |-  F/_ x A
nfiso.5  |-  F/_ x B
Assertion
Ref Expression
nfiso  |-  F/ x  H  Isom  R ,  S  ( A ,  B )

Proof of Theorem nfiso
Dummy variables  y 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-isom 5454 . 2  |-  ( H 
Isom  R ,  S  ( A ,  B )  <-> 
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) ) ) )
2 nfiso.1 . . . 4  |-  F/_ x H
3 nfiso.4 . . . 4  |-  F/_ x A
4 nfiso.5 . . . 4  |-  F/_ x B
52, 3, 4nff1o 5663 . . 3  |-  F/ x  H : A -1-1-onto-> B
6 nfcv 2571 . . . . . . 7  |-  F/_ x
y
7 nfiso.2 . . . . . . 7  |-  F/_ x R
8 nfcv 2571 . . . . . . 7  |-  F/_ x
z
96, 7, 8nfbr 4248 . . . . . 6  |-  F/ x  y R z
102, 6nffv 5726 . . . . . . 7  |-  F/_ x
( H `  y
)
11 nfiso.3 . . . . . . 7  |-  F/_ x S
122, 8nffv 5726 . . . . . . 7  |-  F/_ x
( H `  z
)
1310, 11, 12nfbr 4248 . . . . . 6  |-  F/ x
( H `  y
) S ( H `
 z )
149, 13nfbi 1856 . . . . 5  |-  F/ x
( y R z  <-> 
( H `  y
) S ( H `
 z ) )
153, 14nfral 2751 . . . 4  |-  F/ x A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) )
163, 15nfral 2751 . . 3  |-  F/ x A. y  e.  A  A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) )
175, 16nfan 1846 . 2  |-  F/ x
( H : A -1-1-onto-> B  /\  A. y  e.  A  A. z  e.  A  ( y R z  <-> 
( H `  y
) S ( H `
 z ) ) )
181, 17nfxfr 1579 1  |-  F/ x  H  Isom  R ,  S  ( A ,  B )
Colors of variables: wff set class
Syntax hints:    <-> wb 177    /\ wa 359   F/wnf 1553   F/_wnfc 2558   A.wral 2697   class class class wbr 4204   -1-1-onto->wf1o 5444   ` cfv 5445    Isom wiso 5446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-rel 4876  df-cnv 4877  df-co 4878  df-dm 4879  df-rn 4880  df-iota 5409  df-fun 5447  df-fn 5448  df-f 5449  df-f1 5450  df-fo 5451  df-f1o 5452  df-fv 5453  df-isom 5454
  Copyright terms: Public domain W3C validator