MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfitg1 Structured version   Unicode version

Theorem nfitg1 19694
Description: Bound-variable hypothesis builder for an integral. (Contributed by Mario Carneiro, 28-Jun-2014.)
Assertion
Ref Expression
nfitg1  |-  F/_ x S. A B  _d x

Proof of Theorem nfitg1
Dummy variables  k 
z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-itg 19546 . 2  |-  S. A B  _d x  =  sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  [_ ( Re `  ( B  /  ( _i ^
k ) ) )  /  z ]_ if ( ( x  e.  A  /\  0  <_ 
z ) ,  z ,  0 ) ) ) )
2 nfcv 2578 . . 3  |-  F/_ x
( 0 ... 3
)
3 nfcv 2578 . . . 4  |-  F/_ x
( _i ^ k
)
4 nfcv 2578 . . . 4  |-  F/_ x  x.
5 nfcv 2578 . . . . 5  |-  F/_ x S.2
6 nfmpt1 4323 . . . . 5  |-  F/_ x
( x  e.  RR  |->  [_ ( Re `  ( B  /  ( _i ^
k ) ) )  /  z ]_ if ( ( x  e.  A  /\  0  <_ 
z ) ,  z ,  0 ) )
75, 6nffv 5764 . . . 4  |-  F/_ x
( S.2 `  ( x  e.  RR  |->  [_ (
Re `  ( B  /  ( _i ^
k ) ) )  /  z ]_ if ( ( x  e.  A  /\  0  <_ 
z ) ,  z ,  0 ) ) )
83, 4, 7nfov 6133 . . 3  |-  F/_ x
( ( _i ^
k )  x.  ( S.2 `  ( x  e.  RR  |->  [_ ( Re `  ( B  /  (
_i ^ k ) ) )  /  z ]_ if ( ( x  e.  A  /\  0  <_  z ) ,  z ,  0 ) ) ) )
92, 8nfsum 12516 . 2  |-  F/_ x sum_ k  e.  ( 0 ... 3 ) ( ( _i ^ k
)  x.  ( S.2 `  ( x  e.  RR  |->  [_ ( Re `  ( B  /  ( _i ^
k ) ) )  /  z ]_ if ( ( x  e.  A  /\  0  <_ 
z ) ,  z ,  0 ) ) ) )
101, 9nfcxfr 2575 1  |-  F/_ x S. A B  _d x
Colors of variables: wff set class
Syntax hints:    /\ wa 360    e. wcel 1727   F/_wnfc 2565   [_csb 3267   ifcif 3763   class class class wbr 4237    e. cmpt 4291   ` cfv 5483  (class class class)co 6110   RRcr 9020   0cc0 9021   _ici 9023    x. cmul 9026    <_ cle 9152    / cdiv 9708   3c3 10081   ...cfz 11074   ^cexp 11413   Recre 11933   sum_csu 12510   S.2citg2 19539   S.citg 19541
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1668  ax-8 1689  ax-6 1746  ax-7 1751  ax-11 1763  ax-12 1953  ax-ext 2423
This theorem depends on definitions:  df-bi 179  df-or 361  df-an 362  df-3an 939  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2429  df-cleq 2435  df-clel 2438  df-nfc 2567  df-ral 2716  df-rex 2717  df-rab 2720  df-v 2964  df-sbc 3168  df-csb 3268  df-dif 3309  df-un 3311  df-in 3313  df-ss 3320  df-nul 3614  df-if 3764  df-sn 3844  df-pr 3845  df-op 3847  df-uni 4040  df-br 4238  df-opab 4292  df-mpt 4293  df-xp 4913  df-rel 4914  df-cnv 4915  df-co 4916  df-dm 4917  df-rn 4918  df-res 4919  df-ima 4920  df-iota 5447  df-fun 5485  df-fn 5486  df-f 5487  df-f1 5488  df-fo 5489  df-f1o 5490  df-fv 5491  df-ov 6113  df-oprab 6114  df-mpt2 6115  df-recs 6662  df-rdg 6697  df-seq 11355  df-sum 12511  df-itg 19546
  Copyright terms: Public domain W3C validator