MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmod2 Unicode version

Theorem nfmod2 2169
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
nfeud2.1  |-  F/ y
ph
nfeud2.2  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ps )
Assertion
Ref Expression
nfmod2  |-  ( ph  ->  F/ x E* y ps )

Proof of Theorem nfmod2
StepHypRef Expression
1 df-mo 2161 . 2  |-  ( E* y ps  <->  ( E. y ps  ->  E! y ps ) )
2 nfeud2.1 . . . 4  |-  F/ y
ph
3 nfeud2.2 . . . 4  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ps )
42, 3nfexd2 1926 . . 3  |-  ( ph  ->  F/ x E. y ps )
52, 3nfeud2 2168 . . 3  |-  ( ph  ->  F/ x E! y ps )
64, 5nfimd 1773 . 2  |-  ( ph  ->  F/ x ( E. y ps  ->  E! y ps ) )
71, 6nfxfrd 1561 1  |-  ( ph  ->  F/ x E* y ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1530   E.wex 1531   F/wnf 1534   E!weu 2156   E*wmo 2157
This theorem is referenced by:  nfmod  2171  nfrmod  2726  nfrmo  2728  nfdisj  4021
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-eu 2160  df-mo 2161
  Copyright terms: Public domain W3C validator