MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmod2 Unicode version

Theorem nfmod2 2156
Description: Bound-variable hypothesis builder for uniqueness. (Contributed by Mario Carneiro, 14-Nov-2016.)
Hypotheses
Ref Expression
nfeud2.1  |-  F/ y
ph
nfeud2.2  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ps )
Assertion
Ref Expression
nfmod2  |-  ( ph  ->  F/ x E* y ps )

Proof of Theorem nfmod2
StepHypRef Expression
1 df-mo 2148 . 2  |-  ( E* y ps  <->  ( E. y ps  ->  E! y ps ) )
2 nfeud2.1 . . . 4  |-  F/ y
ph
3 nfeud2.2 . . . 4  |-  ( (
ph  /\  -.  A. x  x  =  y )  ->  F/ x ps )
42, 3nfexd2 1913 . . 3  |-  ( ph  ->  F/ x E. y ps )
52, 3nfeud2 2155 . . 3  |-  ( ph  ->  F/ x E! y ps )
64, 5nfimd 1761 . 2  |-  ( ph  ->  F/ x ( E. y ps  ->  E! y ps ) )
71, 6nfxfrd 1558 1  |-  ( ph  ->  F/ x E* y ps )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 358   A.wal 1527   E.wex 1528   F/wnf 1531   E!weu 2143   E*wmo 2144
This theorem is referenced by:  nfmod  2158  nfrmod  2713  nfrmo  2715  nfdisj  4005
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1529  df-nf 1532  df-eu 2147  df-mo 2148
  Copyright terms: Public domain W3C validator