MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpt2 Unicode version

Theorem nfmpt2 5932
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpt2.1  |-  F/_ z A
nfmpt2.2  |-  F/_ z B
nfmpt2.3  |-  F/_ z C
Assertion
Ref Expression
nfmpt2  |-  F/_ z
( x  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, z    y, z
Allowed substitution hints:    A( x, y, z)    B( x, y, z)    C( x, y, z)

Proof of Theorem nfmpt2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-mpt2 5879 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C ) }
2 nfmpt2.1 . . . . . 6  |-  F/_ z A
32nfcri 2426 . . . . 5  |-  F/ z  x  e.  A
4 nfmpt2.2 . . . . . 6  |-  F/_ z B
54nfcri 2426 . . . . 5  |-  F/ z  y  e.  B
63, 5nfan 1783 . . . 4  |-  F/ z ( x  e.  A  /\  y  e.  B
)
7 nfmpt2.3 . . . . 5  |-  F/_ z C
87nfeq2 2443 . . . 4  |-  F/ z  w  =  C
96, 8nfan 1783 . . 3  |-  F/ z ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C )
109nfoprab 5916 . 2  |-  F/_ z { <. <. x ,  y
>. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C ) }
111, 10nfcxfr 2429 1  |-  F/_ z
( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 358    = wceq 1632    e. wcel 1696   F/_wnfc 2419   {coprab 5875    e. cmpt2 5876
This theorem is referenced by:  nfof  6099  nfseq  11072  ptbasfi  17292  dya2iocrrnval  23597  sdclem1  26556  fmuldfeqlem1  27815  stoweidlem51  27903
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-oprab 5878  df-mpt2 5879
  Copyright terms: Public domain W3C validator