Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpt2 Unicode version

Theorem nfmpt2 5932
 Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpt2.1
nfmpt2.2
nfmpt2.3
Assertion
Ref Expression
nfmpt2
Distinct variable groups:   ,   ,
Allowed substitution hints:   (,,)   (,,)   (,,)

Proof of Theorem nfmpt2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-mpt2 5879 . 2
2 nfmpt2.1 . . . . . 6
32nfcri 2426 . . . . 5
4 nfmpt2.2 . . . . . 6
54nfcri 2426 . . . . 5
63, 5nfan 1783 . . . 4
7 nfmpt2.3 . . . . 5
87nfeq2 2443 . . . 4
96, 8nfan 1783 . . 3
109nfoprab 5916 . 2
111, 10nfcxfr 2429 1
 Colors of variables: wff set class Syntax hints:   wa 358   wceq 1632   wcel 1696  wnfc 2419  coprab 5875   cmpt2 5876 This theorem is referenced by:  nfof  6099  nfseq  11072  ptbasfi  17292  dya2iocrrnval  23597  sdclem1  26556  fmuldfeqlem1  27815  stoweidlem51  27903 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-oprab 5878  df-mpt2 5879
 Copyright terms: Public domain W3C validator