MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfmpt2 Unicode version

Theorem nfmpt2 6082
Description: Bound-variable hypothesis builder for the maps-to notation. (Contributed by NM, 20-Feb-2013.)
Hypotheses
Ref Expression
nfmpt2.1  |-  F/_ z A
nfmpt2.2  |-  F/_ z B
nfmpt2.3  |-  F/_ z C
Assertion
Ref Expression
nfmpt2  |-  F/_ z
( x  e.  A ,  y  e.  B  |->  C )
Distinct variable groups:    x, z    y, z
Allowed substitution hints:    A( x, y, z)    B( x, y, z)    C( x, y, z)

Proof of Theorem nfmpt2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-mpt2 6026 . 2  |-  ( x  e.  A ,  y  e.  B  |->  C )  =  { <. <. x ,  y >. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C ) }
2 nfmpt2.1 . . . . . 6  |-  F/_ z A
32nfcri 2518 . . . . 5  |-  F/ z  x  e.  A
4 nfmpt2.2 . . . . . 6  |-  F/_ z B
54nfcri 2518 . . . . 5  |-  F/ z  y  e.  B
63, 5nfan 1836 . . . 4  |-  F/ z ( x  e.  A  /\  y  e.  B
)
7 nfmpt2.3 . . . . 5  |-  F/_ z C
87nfeq2 2535 . . . 4  |-  F/ z  w  =  C
96, 8nfan 1836 . . 3  |-  F/ z ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C )
109nfoprab 6066 . 2  |-  F/_ z { <. <. x ,  y
>. ,  w >.  |  ( ( x  e.  A  /\  y  e.  B )  /\  w  =  C ) }
111, 10nfcxfr 2521 1  |-  F/_ z
( x  e.  A ,  y  e.  B  |->  C )
Colors of variables: wff set class
Syntax hints:    /\ wa 359    = wceq 1649    e. wcel 1717   F/_wnfc 2511   {coprab 6022    e. cmpt2 6023
This theorem is referenced by:  nfseq  11261  ptbasfi  17535  sdclem1  26139  fmuldfeqlem1  27381  stoweidlem51  27469
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1552  ax-5 1563  ax-17 1623  ax-9 1661  ax-8 1682  ax-6 1736  ax-7 1741  ax-11 1753  ax-12 1939  ax-ext 2369
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1325  df-ex 1548  df-nf 1551  df-sb 1656  df-clab 2375  df-cleq 2381  df-clel 2384  df-nfc 2513  df-oprab 6025  df-mpt2 6026
  Copyright terms: Public domain W3C validator