MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfned Unicode version

Theorem nfned 2541
Description: Bound-variable hypothesis builder for inequality. (Contributed by NM, 10-Nov-2007.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfned.1  |-  ( ph  -> 
F/_ x A )
nfned.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfned  |-  ( ph  ->  F/ x  A  =/= 
B )

Proof of Theorem nfned
StepHypRef Expression
1 df-ne 2448 . 2  |-  ( A  =/=  B  <->  -.  A  =  B )
2 nfned.1 . . . 4  |-  ( ph  -> 
F/_ x A )
3 nfned.2 . . . 4  |-  ( ph  -> 
F/_ x B )
42, 3nfeqd 2433 . . 3  |-  ( ph  ->  F/ x  A  =  B )
54nfnd 1760 . 2  |-  ( ph  ->  F/ x  -.  A  =  B )
61, 5nfxfrd 1558 1  |-  ( ph  ->  F/ x  A  =/= 
B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   F/wnf 1531    = wceq 1623   F/_wnfc 2406    =/= wne 2446
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-an 360  df-nf 1532  df-cleq 2276  df-nfc 2408  df-ne 2448
  Copyright terms: Public domain W3C validator