MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfneg Unicode version

Theorem nfneg 9048
Description: Bound-variable hypothesis builder for the negative of a complex number. (Contributed by NM, 12-Jun-2005.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfneg.1  |-  F/_ x A
Assertion
Ref Expression
nfneg  |-  F/_ x -u A

Proof of Theorem nfneg
StepHypRef Expression
1 nfneg.1 . . . 4  |-  F/_ x A
21a1i 10 . . 3  |-  (  T. 
->  F/_ x A )
32nfnegd 9047 . 2  |-  (  T. 
->  F/_ x -u A
)
43trud 1314 1  |-  F/_ x -u A
Colors of variables: wff set class
Syntax hints:    T. wtru 1307   F/_wnfc 2406   -ucneg 9038
This theorem is referenced by:  riotaneg  9729  infcvgaux1i  12315  mbfposb  19008  dvfsum2  19381  stoweidlem23  27772  stoweidlem47  27796
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-ral 2548  df-rex 2549  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649  df-uni 3828  df-br 4024  df-iota 5219  df-fv 5263  df-ov 5861  df-neg 9040
  Copyright terms: Public domain W3C validator