MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnegd Unicode version

Theorem nfnegd 9063
Description: Deduction version of nfneg 9064. (Contributed by NM, 29-Feb-2008.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypothesis
Ref Expression
nfnegd.1  |-  ( ph  -> 
F/_ x A )
Assertion
Ref Expression
nfnegd  |-  ( ph  -> 
F/_ x -u A
)

Proof of Theorem nfnegd
StepHypRef Expression
1 df-neg 9056 . 2  |-  -u A  =  ( 0  -  A )
2 nfcvd 2433 . . 3  |-  ( ph  -> 
F/_ x 0 )
3 nfcvd 2433 . . 3  |-  ( ph  -> 
F/_ x  -  )
4 nfnegd.1 . . 3  |-  ( ph  -> 
F/_ x A )
52, 3, 4nfovd 5896 . 2  |-  ( ph  -> 
F/_ x ( 0  -  A ) )
61, 5nfcxfrd 2430 1  |-  ( ph  -> 
F/_ x -u A
)
Colors of variables: wff set class
Syntax hints:    -> wi 4   F/_wnfc 2419  (class class class)co 5874   0cc0 8753    - cmin 9053   -ucneg 9054
This theorem is referenced by:  nfneg  9064
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rex 2562  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-uni 3844  df-br 4040  df-iota 5235  df-fv 5279  df-ov 5877  df-neg 9056
  Copyright terms: Public domain W3C validator