MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfneld Unicode version

Theorem nfneld 2555
Description: Bound-variable hypothesis builder for inequality. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfneld.1  |-  ( ph  -> 
F/_ x A )
nfneld.2  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfneld  |-  ( ph  ->  F/ x  A  e/  B )

Proof of Theorem nfneld
StepHypRef Expression
1 df-nel 2462 . 2  |-  ( A  e/  B  <->  -.  A  e.  B )
2 nfneld.1 . . . 4  |-  ( ph  -> 
F/_ x A )
3 nfneld.2 . . . 4  |-  ( ph  -> 
F/_ x B )
42, 3nfeld 2447 . . 3  |-  ( ph  ->  F/ x  A  e.  B )
54nfnd 1772 . 2  |-  ( ph  ->  F/ x  -.  A  e.  B )
61, 5nfxfrd 1561 1  |-  ( ph  ->  F/ x  A  e/  B )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4   F/wnf 1534    e. wcel 1696   F/_wnfc 2419    e/ wnel 2460
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-ex 1532  df-nf 1535  df-cleq 2289  df-clel 2292  df-nfc 2421  df-nel 2462
  Copyright terms: Public domain W3C validator