Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfneld Structured version   Unicode version

Theorem nfneld 2704
 Description: Bound-variable hypothesis builder for negated membership. (Contributed by David Abernethy, 26-Jun-2011.) (Revised by Mario Carneiro, 7-Oct-2016.)
Hypotheses
Ref Expression
nfneld.1
nfneld.2
Assertion
Ref Expression
nfneld

Proof of Theorem nfneld
StepHypRef Expression
1 df-nel 2603 . 2
2 nfneld.1 . . . 4
3 nfneld.2 . . . 4
42, 3nfeld 2588 . . 3
54nfnd 1810 . 2
61, 5nfxfrd 1581 1
 Colors of variables: wff set class Syntax hints:   wn 3   wi 4  wnf 1554   wcel 1726  wnfc 2560   wnel 2601 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-ext 2418 This theorem depends on definitions:  df-bi 179  df-an 362  df-ex 1552  df-nf 1555  df-cleq 2430  df-clel 2433  df-nfc 2562  df-nel 2603
 Copyright terms: Public domain W3C validator