Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnfc Structured version   Unicode version

Theorem nfnfc 2578
 Description: Hypothesis builder for . (Contributed by Mario Carneiro, 11-Aug-2016.)
Hypothesis
Ref Expression
nfnfc.1
Assertion
Ref Expression
nfnfc

Proof of Theorem nfnfc
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-nfc 2561 . 2
2 nfnfc.1 . . . . 5
32nfcri 2566 . . . 4
43nfnf 1867 . . 3
54nfal 1864 . 2
61, 5nfxfr 1579 1
 Colors of variables: wff set class Syntax hints:  wal 1549  wnf 1553   wcel 1725  wnfc 2559 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2417 This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-cleq 2429  df-clel 2432  df-nfc 2561
 Copyright terms: Public domain W3C validator