MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfnth Structured version   Unicode version

Theorem nfnth 1565
Description: No variable is (effectively) free in a non-theorem. (Contributed by Mario Carneiro, 6-Dec-2016.)
Hypothesis
Ref Expression
nfnth.1  |-  -.  ph
Assertion
Ref Expression
nfnth  |-  F/ x ph

Proof of Theorem nfnth
StepHypRef Expression
1 nfnth.1 . . 3  |-  -.  ph
21pm2.21i 125 . 2  |-  ( ph  ->  A. x ph )
32nfi 1560 1  |-  F/ x ph
Colors of variables: wff set class
Syntax hints:   -. wn 3   A.wal 1549   F/wnf 1553
This theorem is referenced by:  nd1  8454  nd2  8455
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555
This theorem depends on definitions:  df-bi 178  df-nf 1554
  Copyright terms: Public domain W3C validator