Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfofr Unicode version

Theorem nfofr 6100
 Description: Hypothesis builder for function relation. (Contributed by Mario Carneiro, 28-Jul-2014.)
Hypothesis
Ref Expression
nfof.1
Assertion
Ref Expression
nfofr
Distinct variable group:   ,

Proof of Theorem nfofr
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-ofr 6095 . 2
2 nfcv 2432 . . . 4
3 nfcv 2432 . . . . 5
4 nfof.1 . . . . 5
5 nfcv 2432 . . . . 5
63, 4, 5nfbr 4083 . . . 4
72, 6nfral 2609 . . 3
87nfopab 4100 . 2
91, 8nfcxfr 2429 1
 Colors of variables: wff set class Syntax hints:  wnfc 2419  wral 2556   cin 3164   class class class wbr 4039  copab 4092   cdm 4705  cfv 5271   cofr 6093 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277 This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-ral 2561  df-rab 2565  df-v 2803  df-dif 3168  df-un 3170  df-in 3172  df-ss 3179  df-nul 3469  df-if 3579  df-sn 3659  df-pr 3660  df-op 3662  df-br 4040  df-opab 4094  df-ofr 6095
 Copyright terms: Public domain W3C validator