MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoi Unicode version

Theorem nfoi 7472
Description: Hypothesis builder for ordinal isomorphism. (Contributed by Mario Carneiro, 23-May-2015.) (Revised by Mario Carneiro, 15-Oct-2016.)
Hypotheses
Ref Expression
nfoi.1  |-  F/_ x R
nfoi.2  |-  F/_ x A
Assertion
Ref Expression
nfoi  |-  F/_ xOrdIso ( R ,  A )

Proof of Theorem nfoi
Dummy variables  h  a  j  t  u  v  w  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-oi 7468 . 2  |- OrdIso ( R ,  A )  =  if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { a  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" a ) z R t } ) ,  (/) )
2 nfoi.1 . . . . 5  |-  F/_ x R
3 nfoi.2 . . . . 5  |-  F/_ x A
42, 3nfwe 4550 . . . 4  |-  F/ x  R  We  A
52, 3nfse 4549 . . . 4  |-  F/ x  R Se  A
64, 5nfan 1846 . . 3  |-  F/ x
( R  We  A  /\  R Se  A )
7 nfcv 2571 . . . . . 6  |-  F/_ x _V
8 nfcv 2571 . . . . . . . . . 10  |-  F/_ x ran  h
9 nfcv 2571 . . . . . . . . . . 11  |-  F/_ x
j
10 nfcv 2571 . . . . . . . . . . 11  |-  F/_ x w
119, 2, 10nfbr 4248 . . . . . . . . . 10  |-  F/ x  j R w
128, 11nfral 2751 . . . . . . . . 9  |-  F/ x A. j  e.  ran  h  j R w
1312, 3nfrab 2881 . . . . . . . 8  |-  F/_ x { w  e.  A  |  A. j  e.  ran  h  j R w }
14 nfcv 2571 . . . . . . . . . 10  |-  F/_ x u
15 nfcv 2571 . . . . . . . . . 10  |-  F/_ x
v
1614, 2, 15nfbr 4248 . . . . . . . . 9  |-  F/ x  u R v
1716nfn 1811 . . . . . . . 8  |-  F/ x  -.  u R v
1813, 17nfral 2751 . . . . . . 7  |-  F/ x A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v
1918, 13nfriota 6550 . . . . . 6  |-  F/_ x
( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v )
207, 19nfmpt 4289 . . . . 5  |-  F/_ x
( h  e.  _V  |->  ( iota_ v  e.  {
w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) )
2120nfrecs 6626 . . . 4  |-  F/_ xrecs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
22 nfcv 2571 . . . . . . . 8  |-  F/_ x
a
2321, 22nfima 5202 . . . . . . 7  |-  F/_ x
(recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" a )
24 nfcv 2571 . . . . . . . 8  |-  F/_ x
z
25 nfcv 2571 . . . . . . . 8  |-  F/_ x
t
2624, 2, 25nfbr 4248 . . . . . . 7  |-  F/ x  z R t
2723, 26nfral 2751 . . . . . 6  |-  F/ x A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" a ) z R t
283, 27nfrex 2753 . . . . 5  |-  F/ x E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" a ) z R t
29 nfcv 2571 . . . . 5  |-  F/_ x On
3028, 29nfrab 2881 . . . 4  |-  F/_ x { a  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" a ) z R t }
3121, 30nfres 5139 . . 3  |-  F/_ x
(recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { a  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e. 
_V  |->  ( iota_ v  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e. 
{ w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" a ) z R t } )
32 nfcv 2571 . . 3  |-  F/_ x (/)
336, 31, 32nfif 3755 . 2  |-  F/_ x if ( ( R  We  A  /\  R Se  A ) ,  (recs ( ( h  e.  _V  |->  (
iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )  |`  { a  e.  On  |  E. t  e.  A  A. z  e.  (recs ( ( h  e.  _V  |->  ( iota_ v  e.  { w  e.  A  |  A. j  e.  ran  h  j R w } A. u  e.  { w  e.  A  |  A. j  e.  ran  h  j R w }  -.  u R v ) ) )
" a ) z R t } ) ,  (/) )
341, 33nfcxfr 2568 1  |-  F/_ xOrdIso ( R ,  A )
Colors of variables: wff set class
Syntax hints:   -. wn 3    /\ wa 359   F/_wnfc 2558   A.wral 2697   E.wrex 2698   {crab 2701   _Vcvv 2948   (/)c0 3620   ifcif 3731   class class class wbr 4204    e. cmpt 4258   Se wse 4531    We wwe 4532   Oncon0 4573   ran crn 4870    |` cres 4871   "cima 4872   iota_crio 6533  recscrecs 6623  OrdIsocoi 7467
This theorem is referenced by:  hsmexlem2  8296
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3or 937  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-eu 2284  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rex 2703  df-reu 2704  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-uni 4008  df-br 4205  df-opab 4259  df-mpt 4260  df-po 4495  df-so 4496  df-fr 4533  df-se 4534  df-we 4535  df-xp 4875  df-cnv 4877  df-dm 4879  df-rn 4880  df-res 4881  df-ima 4882  df-iota 5409  df-fv 5453  df-riota 6540  df-recs 6624  df-oi 7468
  Copyright terms: Public domain W3C validator