MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfopd Unicode version

Theorem nfopd 3813
Description: Deduction version of bound-variable hypothesis builder nfop 3812. This shows how the deduction version of a not-free theorem such as nfop 3812 can be created from the corresponding not-free inference theorem. (Contributed by NM, 4-Feb-2008.)
Hypotheses
Ref Expression
nfopd.2  |-  ( ph  -> 
F/_ x A )
nfopd.3  |-  ( ph  -> 
F/_ x B )
Assertion
Ref Expression
nfopd  |-  ( ph  -> 
F/_ x <. A ,  B >. )

Proof of Theorem nfopd
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 nfaba1 2424 . . 3  |-  F/_ x { z  |  A. x  z  e.  A }
2 nfaba1 2424 . . 3  |-  F/_ x { z  |  A. x  z  e.  B }
31, 2nfop 3812 . 2  |-  F/_ x <. { z  |  A. x  z  e.  A } ,  { z  |  A. x  z  e.  B } >.
4 nfopd.2 . . 3  |-  ( ph  -> 
F/_ x A )
5 nfopd.3 . . 3  |-  ( ph  -> 
F/_ x B )
6 nfnfc1 2422 . . . . 5  |-  F/ x F/_ x A
7 nfnfc1 2422 . . . . 5  |-  F/ x F/_ x B
86, 7nfan 1771 . . . 4  |-  F/ x
( F/_ x A  /\  F/_ x B )
9 abidnf 2934 . . . . . 6  |-  ( F/_ x A  ->  { z  |  A. x  z  e.  A }  =  A )
109adantr 451 . . . . 5  |-  ( (
F/_ x A  /\  F/_ x B )  ->  { z  |  A. x  z  e.  A }  =  A )
11 abidnf 2934 . . . . . 6  |-  ( F/_ x B  ->  { z  |  A. x  z  e.  B }  =  B )
1211adantl 452 . . . . 5  |-  ( (
F/_ x A  /\  F/_ x B )  ->  { z  |  A. x  z  e.  B }  =  B )
1310, 12opeq12d 3804 . . . 4  |-  ( (
F/_ x A  /\  F/_ x B )  ->  <. { z  |  A. x  z  e.  A } ,  { z  |  A. x  z  e.  B } >.  =  <. A ,  B >. )
148, 13nfceqdf 2418 . . 3  |-  ( (
F/_ x A  /\  F/_ x B )  -> 
( F/_ x <. { z  |  A. x  z  e.  A } ,  { z  |  A. x  z  e.  B } >. 
<-> 
F/_ x <. A ,  B >. ) )
154, 5, 14syl2anc 642 . 2  |-  ( ph  ->  ( F/_ x <. { z  |  A. x  z  e.  A } ,  { z  |  A. x  z  e.  B } >. 
<-> 
F/_ x <. A ,  B >. ) )
163, 15mpbii 202 1  |-  ( ph  -> 
F/_ x <. A ,  B >. )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 176    /\ wa 358   A.wal 1527    = wceq 1623    e. wcel 1684   {cab 2269   F/_wnfc 2406   <.cop 3643
This theorem is referenced by:  nfbrd  4066  dfid3  4310  nfovd  5880
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1533  ax-5 1544  ax-17 1603  ax-9 1635  ax-8 1643  ax-6 1703  ax-7 1708  ax-11 1715  ax-12 1866  ax-ext 2264
This theorem depends on definitions:  df-bi 177  df-or 359  df-an 360  df-3an 936  df-tru 1310  df-ex 1529  df-nf 1532  df-sb 1630  df-clab 2270  df-cleq 2276  df-clel 2279  df-nfc 2408  df-rab 2552  df-v 2790  df-dif 3155  df-un 3157  df-in 3159  df-ss 3166  df-nul 3456  df-if 3566  df-sn 3646  df-pr 3647  df-op 3649
  Copyright terms: Public domain W3C validator