Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoprab Structured version   Unicode version

Theorem nfoprab 6118
 Description: Bound-variable hypothesis builder for an operation class abstraction. (Contributed by NM, 22-Aug-2013.)
Hypothesis
Ref Expression
nfoprab.1
Assertion
Ref Expression
nfoprab
Distinct variable groups:   ,   ,   ,
Allowed substitution hints:   (,,,)

Proof of Theorem nfoprab
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-oprab 6077 . 2
2 nfv 1629 . . . . . . 7
3 nfoprab.1 . . . . . . 7
42, 3nfan 1846 . . . . . 6
54nfex 1865 . . . . 5
65nfex 1865 . . . 4
76nfex 1865 . . 3
87nfab 2575 . 2
91, 8nfcxfr 2568 1
 Colors of variables: wff set class Syntax hints:   wa 359  wex 1550  wnf 1553   wceq 1652  cab 2421  wnfc 2558  cop 3809  coprab 6074 This theorem is referenced by:  nfmpt2  6134 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416 This theorem depends on definitions:  df-bi 178  df-an 361  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-oprab 6077
 Copyright terms: Public domain W3C validator