MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoprab1 Unicode version

Theorem nfoprab1 5913
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 19-Jun-2012.)
Assertion
Ref Expression
nfoprab1  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }

Proof of Theorem nfoprab1
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-oprab 5878 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
2 nfe1 1718 . . 3  |-  F/ x E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
32nfab 2436 . 2  |-  F/_ x { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }
41, 3nfcxfr 2429 1  |-  F/_ x { <. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 358   E.wex 1531    = wceq 1632   {cab 2282   F/_wnfc 2419   <.cop 3656   {coprab 5875
This theorem is referenced by:  ssoprab2b  5921  nfmpt21  5930  ov3  6000  tposoprab  6286
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1536  ax-5 1547  ax-17 1606  ax-9 1644  ax-8 1661  ax-6 1715  ax-7 1720  ax-11 1727  ax-12 1878  ax-ext 2277
This theorem depends on definitions:  df-bi 177  df-an 360  df-tru 1310  df-ex 1532  df-nf 1535  df-sb 1639  df-clab 2283  df-cleq 2289  df-clel 2292  df-nfc 2421  df-oprab 5878
  Copyright terms: Public domain W3C validator