MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoprab2 Structured version   Unicode version

Theorem nfoprab2 6126
Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 25-Apr-1995.) (Revised by David Abernethy, 30-Jul-2012.)
Assertion
Ref Expression
nfoprab2  |-  F/_ y { <. <. x ,  y
>. ,  z >.  | 
ph }

Proof of Theorem nfoprab2
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 df-oprab 6087 . 2  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { w  |  E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph ) }
2 nfe1 1748 . . . 4  |-  F/ y E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph )
32nfex 1866 . . 3  |-  F/ y E. x E. y E. z ( w  = 
<. <. x ,  y
>. ,  z >.  /\ 
ph )
43nfab 2578 . 2  |-  F/_ y { w  |  E. x E. y E. z
( w  =  <. <.
x ,  y >. ,  z >.  /\  ph ) }
51, 4nfcxfr 2571 1  |-  F/_ y { <. <. x ,  y
>. ,  z >.  | 
ph }
Colors of variables: wff set class
Syntax hints:    /\ wa 360   E.wex 1551    = wceq 1653   {cab 2424   F/_wnfc 2561   <.cop 3819   {coprab 6084
This theorem is referenced by:  ssoprab2b  6133  nfmpt22  6143  ov3  6212  tposoprab  6517
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419
This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-oprab 6087
  Copyright terms: Public domain W3C validator