Metamath Proof Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfoprab3 Structured version   Unicode version

Theorem nfoprab3 6128
 Description: The abstraction variables in an operation class abstraction are not free. (Contributed by NM, 22-Aug-2013.)
Assertion
Ref Expression
nfoprab3

Proof of Theorem nfoprab3
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 df-oprab 6088 . 2
2 nfe1 1748 . . . . 5
32nfex 1866 . . . 4
43nfex 1866 . . 3
54nfab 2578 . 2
61, 5nfcxfr 2571 1
 Colors of variables: wff set class Syntax hints:   wa 360  wex 1551   wceq 1653  cab 2424  wnfc 2561  cop 3819  coprab 6085 This theorem is referenced by:  ssoprab2b  6134  ov3  6213  tposoprab  6518 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1556  ax-5 1567  ax-17 1627  ax-9 1667  ax-8 1688  ax-6 1745  ax-7 1750  ax-11 1762  ax-12 1951  ax-ext 2419 This theorem depends on definitions:  df-bi 179  df-an 362  df-tru 1329  df-ex 1552  df-nf 1555  df-sb 1660  df-clab 2425  df-cleq 2431  df-clel 2434  df-nfc 2563  df-oprab 6088
 Copyright terms: Public domain W3C validator