MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  nfpo Structured version   Unicode version

Theorem nfpo 4500
Description: Bound-variable hypothesis builder for partial orders. (Contributed by Stefan O'Rear, 20-Jan-2015.)
Hypotheses
Ref Expression
nfpo.r  |-  F/_ x R
nfpo.a  |-  F/_ x A
Assertion
Ref Expression
nfpo  |-  F/ x  R  Po  A

Proof of Theorem nfpo
Dummy variables  a 
b  c are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-po 4495 . 2  |-  ( R  Po  A  <->  A. a  e.  A  A. b  e.  A  A. c  e.  A  ( -.  a R a  /\  (
( a R b  /\  b R c )  ->  a R
c ) ) )
2 nfpo.a . . 3  |-  F/_ x A
3 nfcv 2571 . . . . . . . 8  |-  F/_ x
a
4 nfpo.r . . . . . . . 8  |-  F/_ x R
53, 4, 3nfbr 4248 . . . . . . 7  |-  F/ x  a R a
65nfn 1811 . . . . . 6  |-  F/ x  -.  a R a
7 nfcv 2571 . . . . . . . . 9  |-  F/_ x
b
83, 4, 7nfbr 4248 . . . . . . . 8  |-  F/ x  a R b
9 nfcv 2571 . . . . . . . . 9  |-  F/_ x
c
107, 4, 9nfbr 4248 . . . . . . . 8  |-  F/ x  b R c
118, 10nfan 1846 . . . . . . 7  |-  F/ x
( a R b  /\  b R c )
123, 4, 9nfbr 4248 . . . . . . 7  |-  F/ x  a R c
1311, 12nfim 1832 . . . . . 6  |-  F/ x
( ( a R b  /\  b R c )  ->  a R c )
146, 13nfan 1846 . . . . 5  |-  F/ x
( -.  a R a  /\  ( ( a R b  /\  b R c )  -> 
a R c ) )
152, 14nfral 2751 . . . 4  |-  F/ x A. c  e.  A  ( -.  a R
a  /\  ( (
a R b  /\  b R c )  -> 
a R c ) )
162, 15nfral 2751 . . 3  |-  F/ x A. b  e.  A  A. c  e.  A  ( -.  a R
a  /\  ( (
a R b  /\  b R c )  -> 
a R c ) )
172, 16nfral 2751 . 2  |-  F/ x A. a  e.  A  A. b  e.  A  A. c  e.  A  ( -.  a R
a  /\  ( (
a R b  /\  b R c )  -> 
a R c ) )
181, 17nfxfr 1579 1  |-  F/ x  R  Po  A
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 359   F/wnf 1553   F/_wnfc 2558   A.wral 2697   class class class wbr 4204    Po wpo 4493
This theorem is referenced by:  nfso  4501
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-3 7  ax-mp 8  ax-gen 1555  ax-5 1566  ax-17 1626  ax-9 1666  ax-8 1687  ax-6 1744  ax-7 1749  ax-11 1761  ax-12 1950  ax-ext 2416
This theorem depends on definitions:  df-bi 178  df-or 360  df-an 361  df-3an 938  df-tru 1328  df-ex 1551  df-nf 1554  df-sb 1659  df-clab 2422  df-cleq 2428  df-clel 2431  df-nfc 2560  df-ral 2702  df-rab 2706  df-v 2950  df-dif 3315  df-un 3317  df-in 3319  df-ss 3326  df-nul 3621  df-if 3732  df-sn 3812  df-pr 3813  df-op 3815  df-br 4205  df-po 4495
  Copyright terms: Public domain W3C validator